GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Publikationsart
Sprache
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2015-10-22
    Beschreibung: We analysed the ground deformation produced by the M w = 6.1 2014 January 26 and M w = 6.0 2014 February 3 Cephalonia earthquakes, western Greece. Campaign GPS measurements and RADARSAT-2 synthetic aperture radar (SAR) interferometry provide constraints on the overall deformation produced by the sequence. TerraSAR-X and COSMO-SkyMed SAR interferometry provide constraints on the second earthquake separately. Two permanent GPS stations captured the two coseismic offsets and show no pre- or post-seismic transients. Most of the deformation is concentrated in the Paliki peninsula which is consistent with the location of the seismicity and the damages. Both GPS and SAR interferometry indicate areas with large deformation gradients probably due to shallow effects. Given the limitations on the data and on the knowledge of the structure and rheology of the crust, we used a simple elastic model to fit the ground displacements. Although such model cannot fit all the detail of the deformation, it is expected to provide a robust estimate of the overall geometry and slip of the fault. The good data coverage in azimuth and distance contributes to the robustness of the model. The entire sequence is modelled with a strike slip fault dipping 70° east and cutting most of the brittle crust beneath Paliki, with an upper edge located at 2.5 km depth and a deeper edge at 8.5 km. This fault is oriented N14° which corresponds to the azimuth of the Cephalonia Transform Fault (CTF). The fit to the data is significantly improved by adding a secondary shallow strike-slip fault with low dip angle (30°) with a component of reverse faulting on that shallow fault. The modelling of the February 3 event indicates that the faulting is shallow in the north of Paliki, with a centroid depth of ~3.2 km. The fit is improved when a single planar fault is replaced by a bent fault dipping ~30° in the uppermost 2 km and ~70° below. The fault of the January 26 earthquake, inferred from the difference between the two above models, is located south and beneath the February 3 fault, with a centroid depth of ~6.4 km. We interpret the 2014 fault zone as an east segment of the CTF located ~7 km east of the main axis of the CTF, which location is constrained by the elastic modelling of the interseismic GPS velocities. The aftershock sequence is mostly located between the January 26 fault and the axis of the CTF. According to our analysis, the Paliki peninsula is partly dragged north with the Apulian platform with ~7 mm yr –1 of shear accommodated offshore to the west. During the last 30 yr three main sequences occurred along the CTF, in 1983, 2003 and 2014 breaking a large part of the fault, with a gap of 20–40 km left between Cephalonia and Lefkada.
    Schlagwort(e): Seismology
    Print ISSN: 0956-540X
    Digitale ISSN: 1365-246X
    Thema: Geologie und Paläontologie
    Publiziert von Oxford University Press im Namen von The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2013-08-13
    Beschreibung: In the period 2011 June–October, a tectonic swarm of nearly 1222 earthquakes occurred in the Messenia prefecture at the southwestern region of the Peloponnese Peninsula. The swarm happened in the Messenia's Upper Quaternary basin, 25 km NW of the city of Kalamata, and migrated from NNW towards SSE. The largest earthquakes occurred in 2011 August 14 ( M w  = 4.8), September 14 ( M w  = 4.6) and October 10 ( M w  = 4.7), caused moderate structural damages mainly in old houses in four villages and produced particular unrest to the local population. We have investigated the monthly migration of the swarm using Differential Synthetic Aperture Radar Interferometry (DInSAR), presenting for the first time a very close look at the deformation evolution that may reveal an aseismic slip component of the total movement. The geodetically derived slip distribution for the first 4 months revealed that slip migrated laterally along strike (north to south) and vertically from a deep portion, at ~2.8 km depth, to a shallow portion, at less than 0.5 km, of the fault plane, and concluded its migration towards the surface with a very shallow M w  4.7 event of 2011 October 10 surprisingly detected by DInSAR.
    Print ISSN: 0956-540X
    Digitale ISSN: 1365-246X
    Thema: Geologie und Paläontologie
    Publiziert von Oxford University Press im Namen von The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2020-02-12
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2020-02-12
    Beschreibung: The present work reports the analysis of a possible relationship due to stress transfer between the two earthquakes that hit the province of Van, Eastern Turkey, on October 23, 2011 (Mw = 7.2) and on November 9, 2011 (Mw = 5.6). The surface displacement field of the mainshock has been obtained through a combined data set made up of differential interferograms from COSMO-SkyMed and ENVISAT satellites, integrated with continuous GPS recordings from the Turkish TUSAGA-AKTIF network. This allowed us to retrieve the geometry and the slip distribution of the seismic source and to compute the Coulomb Failure Function (CFF) variation on the aftershock plane, in order to assess a possible causal relationship between the two events. Our results show that the November 9 earthquake could have been triggered by the October 23 shock, with transferred stress values largely exceeding 1 bar.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2020-02-12
    Schlagwort(e): 550 - Earth sciences
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2020-12-15
    Beschreibung: This paper shows the main outcomes of the Puyehue volcano (Chile) eruption monitoring by means of multisensor remote sensing instruments working from thermal infrared (TIR) to microwave (MW) spectral range. Thanks to the use of Synthetic Aperture Radar (SAR) and the Moderate Resolution Imaging Spectroradiometer (MODIS), the eruption evolution was observed, capturing the deformations of volcano edifice, the lava extension, as well as the information on ash and gas emitted. On the one hand, SAR Interferometry applied to ENVISAT-ASAR data allowed the estimation of the deformation occurred just before the beginning of the eruption and the subsequent deflation, with monthly sampling. On the other hand, with the combined use of the very high resolution (VHR) images taken by COSMO-SkyMed X-band SAR, and ENVISAT-ASAR ones, we were able to follow the lava deposition during the most intense phase of the eruption. Additionally, the joined exploitation of SAR and optical MODIS images allowed ash detection, also in cloudy sky conditions. Finally, the information gathered by both types of sensors allowed to highlight some volcanological features of the eruption and the relationship between surface deformation and the amount of ash and gases emitted by the volcano.
    Beschreibung: Published
    Beschreibung: 2786 - 2796
    Beschreibung: 5V. Sorveglianza vulcanica ed emergenze
    Beschreibung: JCR Journal
    Beschreibung: restricted
    Schlagwort(e): SAR interferometry ; Ash ; surface deformation ; lava field ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2021-06-07
    Beschreibung: In the period 2011 June–October, a tectonic swarm of nearly 1222 earthquakes occurred in the Messenia prefecture at the southwestern region of the Peloponnese Peninsula. The swarm happened in the Messenia’s Upper Quaternary basin, 25 km NW of the city of Kalamata, and migrated from NNW towards SSE. The largest earthquakes occurred in 2011 August 14 (Mw = 4.8), September 14 (Mw = 4.6) and October 10 (Mw = 4.7), caused moderate structural damages mainly in old houses in four villages and produced particular unrest to the local population. We have investigated the monthly migration of the swarm using Differential Synthetic Aperture Radar Interferometry (DInSAR), presenting for the first time a very close look at the deformation evolution that may reveal an aseismic slip component of the total movement. The geodetically derived slip distribution for the first 4 months revealed that slip migrated laterally along strike (north to south) and vertically from a deep portion, at ∼2.8 km depth, to a shallow portion, at less than 0.5 km, of the fault plane, and concluded its migration towards the surface with a very shallow Mw 4.7 event of 2011 October 10 surprisingly detected by DInSAR.
    Beschreibung: Published
    Beschreibung: 1302–1309
    Beschreibung: 2T. Tettonica attiva
    Beschreibung: JCR Journal
    Beschreibung: restricted
    Schlagwort(e): SAR interferometry ; seismic swarm ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2021-05-12
    Beschreibung: Today, satellite remote sensing has reached a key role in Earth Sciences. In particular, Synthetic ApertureRadar (SAR) sensors and SAR Interferometry (InSAR) techniques are widely used for the study of dynamicprocesses occurring inside our living planet. Over the past 3 decades, InSAR has been applied for mappingtopography and deformation at the Earth’s surface. These maps are widely used in tectonics, seismology,geomorphology, and volcanology, in order to investigate the kinematics and dynamics of crustal faulting,the causes of postseismic and interseismic displacements, the dynamics of gravity driven slope failures,and the deformation associated with subsurface movement of water, hydrocarbons or magmatic fluids.
    Beschreibung: Published
    Beschreibung: 58-82
    Beschreibung: 1T. Geodinamica e interno della Terra
    Beschreibung: 4T. Fisica dei terremoti e scenari cosismici
    Beschreibung: 3V. Dinamiche e scenari eruttivi
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): SAR ; InSAR ; Earth observation ; Surface displacements ; Satellite missions ; Advanced InSAR ; Earthquake studies ; Volcanic studies ; Tectonic process ; Coseismic studies ; Soil liquefaction ; Post-seismic studies ; Interseismic studies ; Volcanic unrest ; Pre-eruptive phase ; Eruptive phase ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2020-12-15
    Beschreibung: In this letter, we report the presence of a localized Doppler anomaly occurring during the focusing of a Radarsat-2 data set acquired on the Merapi volcano (Indonesia) during the devastating 2010 eruption. The Doppler anomaly is manifested as ∼3-km-wide bull’s-eye-shaped azimuth pixel shifts between two subaperture images. The Doppler anomaly is centered on the summit-south flank of the Merapi volcano. The pixel shifts reach up to 11.6 m. Since the Merapi volcano was undergoing a large eruption during the data acquisition, it is possible that there is a volcano-related phenomenon that has delayed the radar signal so much to create measurable pixel offsets within a single synthetic aperture radar (SAR) data set, similar, but more extensive, to the signal generated by targets motions; similar, but less extensive, to the signal generated by ionospheric perturbations. It is known that the SAR signal is delayed as it passes through heterogeneous layers of the atmosphere, but this delay typically affects the SAR signal to a fraction of the phase cycle or few centimeters depending on the radar wavelength employed by the system. We investigate the source of this anomalous metric signal; we review the theoretical basis of SAR image focusing, and we try to provide a consistent physical framework to our observations. Our results are compatible with the SAR signal being perturbed during the actual process of image focusing by the presence of a contrasting medium located approximately between 6- and 12.5-km altitude, which we propose being associated with the presence of volcanic ash plume.
    Beschreibung: Published
    Beschreibung: 1319 - 1323
    Beschreibung: 5V. Sorveglianza vulcanica ed emergenze
    Beschreibung: JCR Journal
    Beschreibung: restricted
    Schlagwort(e): SAR ; ash ; doppler anomaly ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2017-04-04
    Beschreibung: The Indonesian earthquake took place on 26 December 2004 at 00:58 GMT (moment magnitude 9.3) in the Indian Ocean, offshore the west coast of Sumatra, at a depth of about 30 km. This earthquake is one of the largest of the past 100 years, comparable only with those in Chile (1960) and Alaska (1964). The earthquake originated in the subduction zone of the Indian and Burma plates, moving at a relative velocity of 6 cm/year. The aftershocks were distributed along a plate boundary of about 1000–1300km between Sumatra and the Andaman Islands. Some hours after the earthquake a destructive tsunami followed and hit the coastlines of the surrounding regions, causing widespread destruction in Indonesia, India, Thailand and Sri Lanka. The European Space Agency (ESA) made available a data package composed of European Remote Sensing Satellite Synthetic Aperture Radar (ERS-SAR) and Environment Satellite Advanced SAR (ENVISAT-ASAR) data covering the affected area, acquired before (four acquisition dates) and after (five acquisition dates) the earthquake. A total of 26 frames were analysed. We used this dataset to evaluate the effects of the earthquake and tsunami on the human settlements and the physiographic conditions along the coast. The proposed method is based on a visual comparison between pre- and post-seismic SAR intensity images, and on an analysis of their correlation coefficients. No complex data were made available by the ESA to exploit phase coherence. Analysis of pre- and post-earthquake SAR backscattering showed wide uplift areas between the Andaman Islands and Simeulue Island, and large modifications of the coastline of Sumatra. Subsiding areas were detected along the southeast coast of Andaman up to the west coast of Nicobar Island. Tidal effects were filtered out of the SAR images to identify the consequences of the earthquake. Global Positioning System (GPS) stations in the Andaman provided results confirming the surface displacement pattern detected by SAR. The analysis enabled us to draw a boundary line separating the uplift and subsidence.
    Beschreibung: Published
    Beschreibung: 3891-3910
    Beschreibung: 1.10. TTC - Telerilevamento
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Remote Sensing ; Synthetic Aperture Radar ; Change Detection ; Earthquake ; Tsunami ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...