GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1999
    In:  Eos, Transactions American Geophysical Union Vol. 80, No. 51 ( 1999-12-21), p. 621-625
    In: Eos, Transactions American Geophysical Union, American Geophysical Union (AGU), Vol. 80, No. 51 ( 1999-12-21), p. 621-625
    Abstract: The two leading patterns of Pacific decadal sea surface temperature (SST) variability are strongly linked to large‐scale patterns of warm‐season drought and streamflow in the United States, recent analysis shows. The predictive potential of this link may contribute to the development of warm‐season hydroclimate forecasts in the United States. Understanding of low‐frequency variations in drought and streamflow would be important for both agriculture and water resources management. The two leading patterns are what we call the Pacific Decadal Oscillation (PDO) and the North Pacific mode. Their link with drought and streamflow patterns was notably expressed in the 1960s when severe drought in the northeast (the 1962–66 “Northeastern” drought) and exceptional positive SST anomalies in the North Pacific Ocean (Figures 1a, 1b) both occurred. Analysis of upper tropospheric circulation anomalies showed the North Pacific to be a source region of wave activity affecting the drought area in these summers. The anomalous circulation was vertically coherent and opposed the climatological low‐level moisture inflow over the eastern United States associated with the western extension of the Bermuda High.
    Type of Medium: Online Resource
    ISSN: 0096-3941 , 2324-9250
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1999
    detail.hit.zdb_id: 24845-9
    detail.hit.zdb_id: 2118760-5
    detail.hit.zdb_id: 240154-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 1998
    In:  Journal of Climate Vol. 11, No. 9 ( 1998-09), p. 2238-2257
    In: Journal of Climate, American Meteorological Society, Vol. 11, No. 9 ( 1998-09), p. 2238-2257
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 1998
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Wiley ; 2018
    In:  International Journal of Climatology Vol. 38, No. S1 ( 2018-04)
    In: International Journal of Climatology, Wiley, Vol. 38, No. S1 ( 2018-04)
    Abstract: It is generally agreed that models that better simulate historical and current features of climate should also be the ones that more reliably simulate future climate. This article describes the ability of a selection of global climate models (GCMs) of the Coupled Model Intercomparison Project Phase 5 (CMIP5) to represent the historical and current mean climate and its variability over northeastern Argentina, a region that exhibits frequent extreme events. Two types of simulations are considered: Long‐term simulations for 1901–2005 in which the models respond to climate forcing (e.g. changes in atmospheric composition and land use) and decadal simulations for 1961–2010 that are initialized from observed climate states. Monthly simulations of precipitation and temperature are statistically evaluated for individual models and their ensembles. Subsets of models that best represent the region's climate are further examined. First, models that have a Nash–Sutcliffe efficiency of at least 0.8 are taken as a subset that best represents the observed temperature fields and the mean annual cycle. Their temperature time series are in phase with observations ( r 〉 0.92), despite systematic errors that if desired can be corrected by statistical methods. Likewise, models that have a precipitation Pearson correlation coefficient of at least 0.6 are considered that best represent regional precipitation features. GCMs are able to reproduce the annual precipitation cycle, although they underestimate precipitation amounts during the austral warm season (September through April) and slightly overestimate the cold season rainfall amounts. The ensembles for the subsets of models achieve the best evaluation metrics, exceeding the performance of the overall ensembles as well as those of the individual models.
    Type of Medium: Online Resource
    ISSN: 0899-8418 , 1097-0088
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 1491204-1
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 1993
    In:  Journal of the Atmospheric Sciences Vol. 50, No. 13 ( 1993-07), p. 1950-1965
    In: Journal of the Atmospheric Sciences, American Meteorological Society, Vol. 50, No. 13 ( 1993-07), p. 1950-1965
    Type of Medium: Online Resource
    ISSN: 0022-4928 , 1520-0469
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 1993
    detail.hit.zdb_id: 218351-1
    detail.hit.zdb_id: 2025890-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Climate, American Meteorological Society, Vol. 29, No. 11 ( 2016-06-01), p. 3989-4019
    Abstract: Drought affects virtually every region of the world, and potential shifts in its character in a changing climate are a major concern. This article presents a synthesis of current understanding of meteorological drought, with a focus on the large-scale controls on precipitation afforded by sea surface temperature (SST) anomalies, land surface feedbacks, and radiative forcings. The synthesis is primarily based on regionally focused articles submitted to the Global Drought Information System (GDIS) collection together with new results from a suite of atmospheric general circulation model experiments intended to integrate those studies into a coherent view of drought worldwide. On interannual time scales, the preeminence of ENSO as a driver of meteorological drought throughout much of the Americas, eastern Asia, Australia, and the Maritime Continent is now well established, whereas in other regions (e.g., Europe, Africa, and India), the response to ENSO is more ephemeral or nonexistent. Northern Eurasia, central Europe, and central and eastern Canada stand out as regions with few SST-forced impacts on precipitation on interannual time scales. Decadal changes in SST appear to be a major factor in the occurrence of long-term drought, as highlighted by apparent impacts on precipitation of the late 1990s “climate shifts” in the Pacific and Atlantic SST. Key remaining research challenges include (i) better quantification of unforced and forced atmospheric variability as well as land–atmosphere feedbacks, (ii) better understanding of the physical basis for the leading modes of climate variability and their predictability, and (iii) quantification of the relative contributions of internal decadal SST variability and forced climate change to long-term drought.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2016
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 2011
    In:  Journal of Climate Vol. 24, No. 6 ( 2011-03-15), p. 1801-1820
    In: Journal of Climate, American Meteorological Society, Vol. 24, No. 6 ( 2011-03-15), p. 1801-1820
    Abstract: This study employs observations and the model simulations from the U.S. Climate Variability and Predictability (CLIVAR) Drought Working Group to examine extreme precipitation events like drought and wet spells that persist more than one season over South America. These events tend to persist over northeastern Brazil, the Guianas, and the west coast of Colombia, Ecuador, and Peru. They are least likely to persist over southeastern South America, which includes Uruguay, southern Brazil, and northeastern Argentina. The U.S. CLIVAR simulations, particularly those of the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, version 3.5 (CAM3.5), capture satisfactorily the impact of the El Niño–Southern Oscillation (ENSO) and the north tropical Atlantic (NTA) sea surface temperature anomaly (SSTA) signals on persistent extreme events and reproduce the mechanisms inducing the teleconnection patterns. The cold (warm) ENSO favors wetness (dryness) over Venezuela, Colombia, and northeastern Brazil and dryness (wet spells) over southeastern South America and southern Argentina. The NTA SSTAs alone tend to have a more local impact affecting mostly over northern South America in March–May. The simulations show that when the two modes (ENSO and NTA) act in concert, the effects may become noticeable in different and remote areas of the continent, as they shift the probability of drought and persistent wet spells over different regions of South America. The impact is strong when the ENSO and the NTA are in opposite phases. For the cold (warm) Pacific and warm (cold) Atlantic, droughts (persistent wet spells) are intensified over southeastern South America, while persistent wet spells (droughts) are favored over the northern part of the continent. The changes in the patterns are regional and not as intense when both oceans are warm (or cold).
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2011
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2005
    In:  Journal of Hydrometeorology Vol. 6, No. 4 ( 2005-08-01), p. 341-370
    In: Journal of Hydrometeorology, American Meteorological Society, Vol. 6, No. 4 ( 2005-08-01), p. 341-370
    Abstract: The surface hydrology of the United States’ western basins is investigated using the National Centers for Environmental Prediction operational Eta Model forecasts. During recent years the model has been subject to changes and upgrades that positively affected its performance. These effects on the surface hydrologic cycle are discussed by analyzing the period June 1995–May 2003. Prior to the model assessment, three gauge-based precipitation analyses that are potential sources of model validation are appraised. A fairly large disparity between the gridded precipitation analyses is found in the long-term area averages over the Columbia basin (∼23% difference) and over the Colorado basin (∼12% difference). These discrepancies are due to the type of analysis scheme employed and whether an orographic correction was applied. The basin-averaged Eta Model precipitation forecasts correlate well with the observations at monthly time scales and, after 1999, show a small bias. Over the Columbia basin, the model precipitation bias is typically positive. This bias is significantly smaller with respect to orographically corrected precipitation analyses, indicating that the model’s large-scale precipitation processes respond reasonably well to orographic effects, though manifesting a higher bias during the cool season. Over the Colorado basin, the model precipitation bias is typically negative, and notably more so with respect to 1) the orographically corrected precipitation analyses and 2) the warm season, indicating shortfalls in the convection scheme over arid high mountains. The mean fields of the hydrological variables in the Eta Model are in qualitative agreement with those from the Variable Infiltration Capacity (VIC) macroscale hydrologic model at regional-to-large scales. As expected, the largest differences are found near mountains and the western coastline. While the mean fields of precipitation, evaporation, runoff, and normalized soil moisture are in general agreement, important differences arise in their mean annual cycle over the two basins: snowmelt in the Eta Model precedes that of VIC by 2 months, and this phase shift is also reflected in the other variables. In the last 3–4 yr of the study period, notable improvements are evident in the quality of the model’s precipitation forecast and in the reduction of the residual term of the surface water balance, suggesting that at least similar (or better) quality will be found in studies based on NCEP’s recently completed Eta Model–based North American regional reanalysis.
    Type of Medium: Online Resource
    ISSN: 1525-7541 , 1525-755X
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2005
    detail.hit.zdb_id: 2042176-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Meteorological Society ; 2007
    In:  Journal of Hydrometeorology Vol. 8, No. 6 ( 2007-12-01), p. 1184-1203
    In: Journal of Hydrometeorology, American Meteorological Society, Vol. 8, No. 6 ( 2007-12-01), p. 1184-1203
    Abstract: This study examines the recently released National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR) products over diverse climate regimes to determine the regional relationships between soil moisture and near-surface atmospheric variables. NARR assimilates observed precipitation, as well as near-surface observations of humidity and wind, while seeking a balance of the surface water and energy budgets with a modern land surface model. The results of this study indicate that for most basins (of approximate size of 0.5–1.0 × 106 km2) the NARR surface water budgets have relatively small residuals (about 0.2 mm day−1), and slightly larger residuals (about 0.4 mm day−1) for basins with complex terrain like those in the western United States. Given that the NARR is an assimilation system (especially one that assimilates observed precipitation), the NARR does not include feedbacks between soil moisture and precipitation. Nonetheless, as a diagnostic tool anchored to observations, the NARR does show that the extent of positive correlation between anomalies of soil moisture and anomalies of precipitation in a given region depends on that region’s dryness. The existence of correlations among all variables is a necessary—but not sufficient—condition for land–atmosphere feedbacks to exist, as a region with no correlations would not be expected to have feedbacks. Likewise, a high degree of persistence of soil moisture anomalies in a given basin does not by itself guarantee a positive correlation between anomalies of soil moisture and precipitation. Land surface–atmosphere relationships at monthly time scales are identified by examining the associations between soil moisture and surface and boundary layer variables. Low soil moisture is consistently associated with increased net shortwave radiation and increased outgoing longwave radiation through the effects of less cloud cover and lower atmospheric humidity. No systematic association is revealed between soil moisture and total net surface radiation, as this relation varies substantially between different basins. Low soil moisture is positively correlated with increased sensible heat and lower latent heat (reflected in a smaller evaporative fraction), decreased low-cloud cover, and higher lifting condensation level. The relation between soil moisture anomalies and precipitation anomalies is found to be quite variable between the basins, depending on whether availability of surface water exceeds the available energy for evaporation, or vice versa. Wetter basins, like the Columbia and Ohio, display weak or no correlations between soil moisture anomalies and precipitation anomalies. On the other hand, transitional regions between wet and dry regions, like the central Great Plains, manifest a positive correlation between soil moisture anomalies and precipitation anomalies. These results further the understanding of previous predictability studies (in coupled land–atmosphere prediction models), which indicates that in order for precipitation anomalies to emerge in response to soil moisture anomalies in a given region, it is necessary that the region’s seasonal climate be neither too dry nor too wet.
    Type of Medium: Online Resource
    ISSN: 1525-7541 , 1525-755X
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2007
    detail.hit.zdb_id: 2042176-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Meteorological Society ; 1989
    In:  Journal of Climate Vol. 2, No. 11 ( 1989-11), p. 1352-1361
    In: Journal of Climate, American Meteorological Society, Vol. 2, No. 11 ( 1989-11), p. 1352-1361
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 1989
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 2000
    In:  Monthly Weather Review Vol. 128, No. 5 ( 2000-05), p. 1328-1346
    In: Monthly Weather Review, American Meteorological Society, Vol. 128, No. 5 ( 2000-05), p. 1328-1346
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2000
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...