GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  [Poster] In: EGU General Assembly 2018, 08.-13.04.2018, Vienna, Austria .
    Publication Date: 2018-04-13
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-16
    Description: The present deliverable is a continuation of deliverable D4.21, in which we presented the first steps in the design and preparation of different reanalysis simulations assimilating glider data. We here show the assessment and intercomparison of CMCC MedFS and SOCIB WMOP systems experiments. We have performed, for each system, three different experiments, running a one-year simulation during 2017. We compare a free-run simulation without data assimilation (FREE) and two reanalyses including assimilation: one considering only the generic data sources included in each operational system (NOGLID) and another one adding glider observations to the previous dataset (GLIDER). The models are assessed and inter compared to each other, focusing on the performance to represent the observed 3D structure of the ocean and on their capacity to recreate physical processes, as an anticyclonic eddy structure present in the Balearic sea. Results show how in both systems the use of glider observations can help to further improve the results obtained when using data assimilation, helping to an enhancement of the forecasting capabilities.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-16
    Description: This document presents the results of simulations that include glider profiles assimilation. Simulations are performed with the Marine Copernicus operational biogeochemical model system of the Mediterranean Sea. The deliverable shows that the assimilation of BGC-glider is feasible in the contest of biogeochemical operational systems and that it is built upon the experience of BGC-Argo float data assimilation. Different configuration of the assimilation of glider data have been tested to assess the impact of the physical and biogeochemical glider observations. The deliverable also describes the pre-processing activities of the BGC-glider data to provide qualified observations for the data assimilation and the cross validation of chlorophyll glider data with other sensors (ocean colour and BGC-Argo floats). Results of the simulations show that BGC-glider data assimilation, as already shown for BGC-Argo floats, provides complementary information with respect to Ocean Colour data (which is the only or the most commonly assimilated data in biogeochemical operational systems). Beside their relatively limited horizontal spatial impact, the assimilation of BGC profiles can constrain model simulations for relevant biogeochemical processes in specific periods (summer and transition periods) and layers (surface and subsurface). Results also highlight the importance of the assimilation modelling systems that can efficiently resolve the inconsistencies between chlorophyll observations of different sensors.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-09-07
    Description: Investigations and preparation of glider observations to be assimilated in MED-MFC and WMOP systems.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-11-04
    Description: Investigations and preparation of glider observations to be assimilated in MED-MFC and WMOP systems.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    TUDAV
    In:  EPIC3The Sea of Marmara Marine Biodiversity, Fisheries, Conservation and Governance, Istanbul, TURKEY, TUDAV, 15 p., pp. 169-184, ISBN: ISBN 978-975-8825-34
    Publication Date: 2017-12-31
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-03-29
    Description: Abstract. An observing system simulation experiment (OSSE) is presented in the Sea of Marmara. A highresolution ocean circulation model (FESOM) and an ensemble data assimilation tool (DART) are coupled. The OSSE methodology is used to assess the possible impact of a Ferry- Box network in the eastern Sea of Marmara. A reference experiment without assimilation is performed. Then, synthetic temperature and salinity observations are assimilated along the track of the ferries in the second experiment. The results suggest that a FerryBox network in the Sea of Marmara has potential to improve the forecasts significantly. The salinity and temperature errors get smaller in the upper layer of the water column. The impact of the assimilation is negligible in the lower layer due to the strong stratification. The circulation in the Sea of Marmara, particularly the Bosphorus outflow, helps to propagate the error reduction towards the western basin where no assimilation is performed. Overall, the proposed FerryBox network can be a good start to designing an optimal sustained marine observing network in the Sea of Marmara for assimilation purposes.
    Description: Published
    Description: 537-551
    Description: 3A. Geofisica marina e osservazioni multiparametriche a fondo mare
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-03-28
    Description: A simulation of the Turkish Straits System (TSS) using a high-resolution, three-dimensional, unstructured mesh ocean circulation model with realistic atmospheric forcing for the 2008–2013 period is presented. The depth of the pycnocline between the upper and lower layers remains stationary after 6 years of integration, indicating that despite the limitations of the modelling system, the simulation maintains its realism. The solutions capture important responses to high-frequency atmospheric events such as the reversal of the upper layer flow in the Bosphorus due to southerly severe storms, i.e. blocking events, to the extent that such storms are present in the forcing dataset. The annual average circulations show two distinct patterns in the Sea of Marmara. When the wind stress maximum is localised in the central basin, the Bosphorus jet flows to the south and turns west after reaching the Bozburun Peninsula. In contrast, when the wind stress maximum increases and expands in the north–south direction, the jet deviates to the west before reaching the southern coast and forms a cyclonic gyre in the central basin. In certain years, the mean kinetic energy in the northern Sea of Marmara is found to be comparable to that of the Bosphorus inflow.
    Description: Published
    Description: 999–1019
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-09-24
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-12-22
    Description: In order to be able to forecast the weather and estimate future climate changes in the ocean, it is crucial to understand the past and the mechanisms responsible for the ocean variability. This is particularly true in a complex area such as the Mediterranean Sea with diverse dynamics like deep convection and overturning circulation. To this end, effective tools are ocean reanalyses or reconstructions of the past ocean state. Here we present a new physical reanalysis of the Mediterranean Sea at high resolution, developed in the Copernicus Marine Environment Monitoring Service (CMEMS) framework. The hydrodynamic model is based on the Nucleus for European Modelling of the Ocean (NEMO) combined with a variational data assimilation scheme (OceanVar). The model has a horizontal resolution of 1/24° and 141 unevenly distributed vertical z* levels. It provides daily and monthly temperature, salinity, current, sea level and mixed layer depth as well as hourly fields for surface velocities and sea level. ECMWF ERA-5 atmospheric fields force the model and daily boundary conditions in the Atlantic are taken from a global reanalysis. The reanalysis covers the 33 years from 1987 to 2019. Initialized from SeaDataNet climatology in January 1985, it reaches a nominal state after a 2-years spin-up. In-situ data from CTD, ARGO floats and XBT are assimilated into the model in combination with satellite altimetry observations. This reanalysis has been validated and assessed through comparison to in-situ and satellite observations as well as literature climatologies. The results show an overall improvement of the comparison with observations and a better representation of the main dynamics of the region compared to a previous, lower resolution (1/16°), reanalysis. Temperature and salinity RMSD are decreased by respectively 14 and 18%. The salinity biases at depth of the previous version are corrected. Climate signals show continuous increase of the temperature and salinity, confirming estimates from observations and other reanalysis. The new reanalysis will allow the study of physical processes at multi-scales, from the large scale to the transient small mesoscale structures and the selection of climate indicators for the basin.
    Description: Published
    Description: 702285
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Keywords: ocean ; mediterranean sea ; reanalysis ; numerical modelling ; observations ; data assimilation ; multi-scale
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...