GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    Publication Date: 2015-10-08
    Description: This numerical study provides the first simulation of the anthropogenic tritium invasion and its decay product helium-3 (He-3) in the Mediterranean Sea. The simulation covers the entire tritium (H-3) transient generated by the atmospheric nuclear weapons tests performed in the 1950s and early 1960s and is run till 2011. Tritium, helium-3 and their derived age estimates are particularly suitable for studying intermediate and deep-water ventilation and spreading of water masses at intermediate/deep levels. The simulation is made using a high-resolution regional model NEMO (Nucleus for European Modelling of the Ocean), in a regional configuration for the Mediterranean Sea called MED12, forced at the surface with prescribed tritium evolution derived from observations. The simulation is compared to measurements of tritium and helium-3 performed along large-scale transects in the Mediterranean Sea during the last few decades on cruises of R/V Meteor: M5/6, M31/1, M44/4, M51/2, M84/3, and R/V Poseidon: 234. The results show that the input function used for the tritium generates a realistic distribution of the main hydrographic features of the Mediterranean Sea circulation. In the eastern basin, the results highlight the weak formation of Adriatic Deep Water in the model, which explains its weak contribution to the Eastern Mediterranean Deep Water (EMDW) in the Ionian sub-basin. It produces a realistic representation of the Eastern Mediterranean Transient (EMT) signal, simulating a deep-water formation in the Aegean subbasin at the beginning of 1993, with a realistic timing of deep-water renewal in the eastern basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-19
    Description: The Mediterranean is expected to be one of the most prominent and vulnerable climate change “hotspots” of the twenty-first century, and the physical mechanisms underlying this finding are still not clear. Furthermore, complex interactions and feedbacks involving ocean–atmosphere–land–biogeochemical processes play a prominent role in modulating the climate and environment of the Mediterranean region on a range of spatial and temporal scales. Therefore, it is critical to provide robust climate change information for use in vulnerability–impact–adaptation assessment studies considering the Mediterranean as a fully coupled environmental system. The Mediterranean Coordinated Regional Downscaling Experiment (Med-CORDEX) initiative aims at coordinating the Mediterranean climate modeling community toward the development of fully coupled regional climate simulations, improving all relevant components of the system from atmosphere and ocean dynamics to land surface, hydrology, and biogeochemical processes. The primary goals of Med-CORDEX are to improve understanding of past climate variability and trends and to provide more accurate and reliable future projections, assessing in a quantitative and robust way the added value of using high-resolution and coupled regional climate models. The coordination activities and the scientific outcomes of Med-CORDEX can produce an important framework to foster the development of regional Earth system models in several key regions worldwide.
    Description: Published
    Keywords: MED-CORDEX ; Climate changes
    Repository Name: AquaDocs
    Type: Journal Contribution , Refereed
    Format: pp.1187-1208
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-10
    Description: Understanding the role of sediment-water interactions in the oceanic cycling of neodymium (Nd) isotopes is essential for its reliable use as a modern and palaeoceanographic tracer of ocean circulation. However, the exact processes that control Nd cycling in the ocean are poorly defined and require an up-to-date knowledge of the sources, sinks and transformation of this tracer to and within the ocean (e.g. as per the GEOTRACES core mission). We propose a considerable improvement of Nd-source identification by providing an extensive and up-to-date compilation of published terrestrial and marine sedimentary Nd isotopic measurements. From this database, we construct high resolution, gridded, global maps that characterise the Nd-isotopic signature of the continental margins and seafloor sediment. Here, we present the database, interpolation methods, and final data products. Consistent with the previous studies that inform our compilation, our global results show unradiogenic detrital Nd isotopic values (εNd ≈ -20) in the North Atlantic, εNd values of ≈ -12 to -7 in the Indian and Southern Ocean, and radiogenic values (εNd ≈ -3 to +4) in the Pacific. The new, high-resolution interpolation is useful for improving conceptual knowledge of Nd sources and sinks and enables the application of isotope-enabled ocean models to understand targeted Nd behaviour in the oceans. Such applications may include: examining the strength and distribution of a possible benthic flux required to reconcile global Nd budgets, establishing the potential use of Nd isotopes as a kinematic tracer of ocean circulation, and a general quantification of the non-conservative sedimentary processes that may contribute to marine Nd cycling.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...