GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Keywords
Language
  • 1
    In: Chemical geology, Amsterdam [u.a.] : Elsevier, 1966, 239(2007), 3/4, Seite 323-335, 0009-2541
    In: volume:239
    In: year:2007
    In: number:3/4
    In: pages:323-335
    Description / Table of Contents: A model for the release of Li, Be and B from progressively dehydrating altered oceanic crust during subduction is presented. Combining clinopyroxene/fluid partition coefficients determined experimentally in an earlier study Brenan et al. [Brenan, J.M., Ryerson, F.J., Shaw, H.F., 1998. The role of aqueous fluids in the slab-to-mantle transfer of boron, beryllium, and lithium during subduction: Experiments and models. Geochim. Cosmochim. Acta 62, 33373347] with apparent mineral/clinopyroxene partition coefficients as observed in natural high-pressure metamorphic rocks Marschall et al. [Marschall, H.R., Altherr, R., Ludwig, T., Kalt, A., Gméling, K., Kasztovszky, Zs., 2006a. Partitioning and budget of Li, Be and B in high-pressure metamorphic rocks. Geochim. Cosmochim. Acta 70, 47504769] results in a set of mineral/fluid partition coefficients for high-pressure metamorphic minerals. Mineral modes of altered oceanic crust as a function of pressure and temperature along a given subduction path can be derived from thermodynamic calculations using the program PerpleX. Combination of these modes with mineral/fluid partition coefficients results in whole rock/fluid partition coefficients at any stage of the PT path including information on the amount of fluid released at any depth. Based on these data, the concentrations of Li, Be and B in subducting rocks and released fluids along a given PT path can be modelled. The derived information on B concentrations in rocks and fluids are combined with the temperature-dependent fractionation of B isotopes in order to model the B isotopic evolution of subducting rocks and released fluids. Model calculations are performed for two slightly different chemical compositions (hydrous MORB without K and with 0.5 wt.% K2O), in order to demonstrate the impact of phengite on the boron budget. Provided the necessary input data are available, the concept of such a model could be employed to quantify the trace element release from the slab from any lithology along any reasonable PT path.
    Type of Medium: Article
    ISSN: 0009-2541
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-08-17
    Description: In the Variscan Schwarzwald metabasic rocks form small bodies included within anatectic plagioclase-biotite gneisses. Many metabasites first underwent an eclogite-facies metamorphism at about 2.0 GPa and 670–700 °C, resulting in the assemblage garnet + omphacite + rutile + quartz ± epidote ± amphibole ± kyanite. Since these eclogites are nearly free of an OH-bearing phase, they underwent almost complete dehydration during subduction, suggesting formation along an average to warm top-of-the-slab geotherm of 10–13 °C/km. The age of the Variscan high-P/high-T metamorphism is 〉 333 Ma. After partial exhumation from ~ 65 to ~ 15 km depth, the eclogites were overprinted under increasing activity of H〈sub〉2〈/sub〉O by a number of retrograde reactions. The degree of this overprint under amphibolite-facies conditions (0.4–0.5 GPa/675–690 °C) was very different. Up to now, only retrograde eclogites have been found, but some samples still contain omphacite. Kyanite is at least partially transformed to aggregates of plagioclase + spinel ± corundum ± sapphirine. On the other hand, there are amphibolites that are extensively recrystallized and show the assemblage amphibole + plagioclase + ilmenite/titanite ± biotite ± quartz ± sulphides. The last relic phase that can be found in such otherwise completely recrystallized amphibolites is rutile. After the amphibolite-facies metamorphism at ~ 333 Ma, the metabasites underwent a number of low-temperature transformations, such as sericitization of plagioclase, chloritization of amphibole, and formation of prehnite. The intimate association of metabasite bodies with gneisses of dominantly meta-greywacke compositions suggests derivation from an active plate margin. This view is corroborated by bulk-rock geochemical data. Excluding elements that were mobile during metamorphism (Cs, Rb, Ba, K, Pb, Sr, U), the concentrations of the remaining elements in most of the metabasites are compatible with a derivation from island-arc tholeiites, back-arc basin basalts or calc-alkaline basalts. Only some samples have MORB precursor rocks.
    Description: Ruprecht-Karls-Universität Heidelberg (1026)
    Keywords: ddc:552.4 ; Retrograde eclogite ; Amphibolite ; Basaltic protolith ; Metamorphic evolution ; Schwarzwald ; Germany
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 358 (1992), S. 745-748 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The Moldanubian association of high-pressure granulites with high-temperature peridotites in Lower Austria (southern Bohemian Massif) forms part of the internal crystalline zone of the Palaeozoic Variscan collision belt. Some aspects of the pressure-temperature (P-T) history of the granulites and ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Sr, O, and D/H isotopic compositions have been analyzed in Miocene metaluminous to slightly peraluminous (I-type) granitoids of the central Aegean. Individual plutonic complexes display significant variations in their δ 18O and initial87Sr/86Sr compositions.δD and δ 18O compositions of minerals and whole-rocks are mostly in the magmatic range. Some samples from Naxos and Mykonos/Delos show low δD and δ 18O values characteristic of meteoric-water-hydrothermal interaction, but as a whole the changes in δ 18O and Sr isotopic compositions as a result of hydrothermal alteration were slight, even in instances where marked alteration is petrographically observable. Consequently, the bulk-rock variations of δ 18O from 8.1‰ to 12.0‰ and of87Sr/86Sr from 0.70438 to 0.71450 may be regarded as primary and indicative of the conditions of their evolution. Heterogeneous isotopic compositions observed in the individual plutons of Serifos, Ikaria, Samos and Kos may be caused by the multiple intrusion of chemically and isotopically distinct magma pulses, with high viscosities and relatively rapid consolidation in most cases preventing complete homogenization. The granitoids of Serifos, Ikaria and Kos display weak correlations between the initial87Sr/86Sr and δ 18O and 1/Sr. The granitoid province shows a positive correlation between87Sr/86Sr and δ 18O and a non-linear relationship between87Sr/86Sr and 1/Sr, whereby 1/Sr increases more rapidly than the isotopic ratio as the degree of fractionation of the rocks increases. It is argued that assimilation of older continental material by mantle-derived arc magmas with combined fractionation (AFC) is the most plausible model to explain the chemical and isotopic characteristics of the granitoids and the geological situation in which rock-types trend from granodiorites in the (south)west, near the inferred Oligocene-Miocene suture, to granites in the center and monzonites in the (north)east of the province.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract On the basis of their textures and mineral compositions spinel-peridotite xenoliths of the Cr-diopside group (group I) from Cenozoic volcanic fields of Arabia can be classified into different subtypes. Type IA is of lherzolitic to harzburgitic composition; mineral compositions are similar to those of group I mantle xenoliths from worldwide occurrences. Type IB xenoliths have lherzolitic to wehrlitic compositions; Mg/(Mg+Fe) ratios of the clinopyroxenes (0.862–0.916) and olivines (0.872–0.914) are similar too or slightly lower than those of typical IA minerals. Texturally, type IB xenoliths are distinguished from type IA rocks by the presence of intragranular spinel, intragranular relict Cr-pargasite, and subordinate intergranular Ba-phlogopite (11.1% BaO). The hydrous minerals in type IB xenoliths are interpreted to document an earlier metasomatism 1 which did not affect type IA lithospheric mantle. Subsequent recrystallization caused the partial replacement of Cr-pargasite in type IB materials and resulted in the formation of less hydrous mineral assemblages. Some of the type IA xenoliths are characterized by secondary intergranular amphibole which must have formed recently. The absence or presence of this intergranular amphibole is used to distinguish an anhydrous subtype IA1 from a hydrous subtype IA2. Type IB xenoliths may also contain secondary intergranular amphibole (similar to the one in subtype IA2) or they contain abundant formermelt patches now consisting of glass and phenocrysts of olivine, clinopyroxene, amphibole, and spinel. The secondary intergranular amphiboles and the former melt patches, both are interpreted as results of a second metasomatism (metasomatism 2). In their trace element and isotopic characteristics, type IA1 and type IA2 clinopyroxenes do not exhibit any systematic differences. Furthermore, type IA2 clinopyroxenes are in Sr isotopic disequilibrium with intergranular amphiboles. This suggests that type IA2 clinopyroxenes were not modified during the second metasomatism 2. All type IA clinopyroxenes have low Sr contents (≤100 ppm); most of them show Sm/Nd ratios higher than inferred for bulk earth. In their 87Sr/86Sr and 143Nd/144Nd ratios, type IA clinopyroxenes exhibit a large spread from 0.70226–0.70376 and from 0.51375–0.51251, respectively. Highly variable Sr/Nd ratios (5.0–79.3) and variable TUR and TCHUR model age relationships require different evolutions of the respective mantle portions. Nevertheless, all but two type IA clinopyroxenes form a linear array in a Sm−Nd isochron diagram which probably can not be explained by mixing. If taken as an “isochron” the slope of the array corresponds to an age of around 700 Ma. The mean initial εNd of 5.8±1.7 (1σ) is similar to values for juvenile Pan-African (i.e. 850–650 Ma old) crust of the Arabian-Nubian shield. It is suggested that type IA lithospheric mantle and the juvenile Pan-African crust are two counterparts fractionated from a common source during the earlier stages of the Pan-African. Type IB clinopyroxenes have high Sr contents (≥200 ppm), variable Sr/Nd ratios (9–111) and Sm/Nd ratios generally below that inferred for bulk earth, and show a small spread in their Sr and Nd isotopic compositions (0.70299–0.70318 and 0.51285–0.51278, respectively). In a Sm−Nd isochron diagram the data points form a linear, horizontal array indicating a close-to-zero age for the earlier metasomatism 1 and suggesting a close genetic relationship to mantle processes related to the formation of the Red Sea.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract In the Central Dinaric Ophiolite Belt (CDOB) peridotites and associated metamorphic rocks of various grades tectonically overlie an olistostrome melange of middle to late Jurassic age. Peridotites and underlying slices of mafic granulites (partially transformed to gamet amphibolites) are intruded by doleritic dikes which do not occur in the melange. The melange contains blocks of subgreywackes and cherts as well as those of pillow lavas and massive diabase (spilites). CDOB peridotites are in the spinel peridotite facies, but locally spinel-plagioclase peridotites occur as well. All peridotites have lherzolitic compositions showing several significant element correlations: Al2O3, CaO, TiO2, Na2O and Cu are negatively correlated and Ni is positively correlated with MgO. Recent estimates of primitive mantle compositions lie near the low-MgO end point of each correlation trend. Al/Ti and Ca/Al ratios of CDOB lherzolites are for the most part higher than the range observed in chondrites. However, when a few samples with extreme compositions are excluded, Al/Ti and Ca/Al are positively correlated with MgO, and the samples at the low-MgO end have near-chondritic Ca/Al but slightly higher than chondritic Al/Ti ratios. Chondrite-normalized REE patterns of CDOB lherzolites show extreme depletions in LREE providing strong evidence for the absence of any metasomatic renrichment. The lack of correlation between highly incompatible elements (LREE) and moderately incompatible elements (HREE, Ti, Na, Al, Ca) together with the extremely low La/Sm ratios suggest that fractional or very small increment melt removal played a role in the genesis of these lherzolites. Four out of five lherzolites yield and apparent Sm-Nd isochron age of 136±15 Ma with an ɛNb of 6.0±1.1 (bulk rocks and clinopyroxene separates). One sample has an exceptionally high ɛNd of about 23. The mafic igneous rocks scatter around the lower end of the 136 Ma reference isochron allowing, but not proving, a genetic relationship with a mantle having a Nd isotopic composition which is similar to that of CDOB lherzolites. LIL element abundances of spilites and doleritic dike rocks suggest some hydrothermal alteration. In primitive mantle-normalized concentration diagrams none of these mafic igneous rocks shows a significant negative Nb-Ta anomaly. Chondrite-normalized REE patterns of both rock types are essentially flat. Whereas the inferred primary compositions of the spilites compare well with those of E-type MORBs, the doleritic dike rocks show elemental ratios similar to those normally found in back-arc basin tholeiites.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 121 (1995), S. 45-60 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  This paper presents mineralogical and textural data as well as thermobarometric calculations on ultramafic high-pressure rocks from the Variscan basement of the Schwarzwald (F.R.G.). The rocks form small isolated bodies within low-pressure / high-temperature gneisses and migmatites. The results of this study constrain contrasting P-T evolutions for four garnet-bearing ultramafic high-pressure rocks. Two magnesian garnet-spinal peridotites sampled near the southern margin of the Central Schwarzwald Gneiss Complex (CSGC) were equilibrated at 670–740° C and 1.4–1.8 GPa. These P-T conditions are similar to those recorded by eclogites intercalated in the same basement unit. Two garnet websterites sampled from the northern part of the CSGC have comparatively low Mg/(Mg+Fe) and low Cr and Ni abundances and are interpreted as former cumulates. These rocks most probably experienced an initial high-temperature stage within the spinel peridotite stability field, followed by re-equilibration at 740–850° C / 3.2–4.3 GPa and subsequent recrystallization at lower pressures. Further petrologic studies have to reveal whether ultramafic high-pressure rocks of the Schwarzwald can generally be assigned to these two groups which are mainly defined by contrasting peak pressures.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Polymetamorphic rocks of Sifnos (Greece) have been investigated by Rb-Sr, K-Ar, and fission track methods. Critical mineral assemblages from the northern and southernmost parts of Sifnos include jadeite+quartz+3T phengite, and omphacite+garnet +3T phengite, whereas the central part is characterized by the assemblage albite+chlorite+epidote+2M 1 phengite. K-Ar and Rb-Sr dates on phengites (predominantly 3T) of the best preserved high P/itTmetamorphic rocks from northern Sifnos gave concordant ages around 42 m.y., indicating a Late Lutetian age for the high P/T metamorphism. Phengites (2M 1+3T) of less preserved high P/T assemblages yielded K-Ar dates between 48 and 41 m.y. but generally lower Rb-Sr dates. The higher K-Ar dates are interpreted as being elevated by excess argon. K-Ar and Rb-Sr ages on 2M 1 phengites from central Sifnos vary between 24 and 21 m.y. These ages date a second, greenschist-facies metamorphism which overprinted the earlier high-pressure metamorphic rocks.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The Kallithea intrusive complex on Samos forms part of the Miocene granitoid province of the central Aegean. The complex consists of numerous composite dikes consisting of different I-type diorites, monzodiorites, (quartz) monzonites, granodiorites, and granites, as well as rare pegmatites. Within individual dikes the different rock types display various structural relationships to each other, most of which indicate that multiple intrusion was the main process responsible for the association of different rock types. Petrographical, geochemical, and Sr isotope data prove that at least some of the different magma pulses were genetically unrelated. For others, a comagmatic relationship cannot be excluded. The most spectacular feature of the composite dikes are net-veined parts in which spherical (pillow-like) to angular bodies of microdiorite are surrounded by a network of more felsic rocks of varying compositions (monzonites, granodiorites, and monzogranites). — For the microdiorite/monzogranite pairs, a formation by unmixing due to liquid immiscibility is suggested by the following facts: (a) the presence of monzogranite ocelli within the microdiorite bodies, (b) similar compositions of those minerals present in both the basic and felsic parts, (c) the enrichment of HFS elements in the basic parts and the depletion of these elements in the acid parts, (d) similar Sr isotope initial ratios. Such an origin, however, is excluded for the other net-veined parts having felsic veins of either monzonitic or granodioritic compositions. In these pairs, the HFS elements are enriched in the acid parts, common minerals may have different compositions, and Sr isotope initial ratios are different. These net-veined parts can only be explained by the model of multiple injections whereby a felsic melt intruded into a basic magma.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-23
    Description: A model for the release of Li, Be and B from progressively dehydrating altered oceanic crust during subduction is presented. Combining clinopyroxene/fluid partition coefficients determined experimentally in an earlier study Brenan et al. [Brenan, J.M., Ryerson, F.J., Shaw, H.F., 1998. The role of aqueous fluids in the slab-to-mantle transfer of boron, beryllium, and lithium during subduction: Experiments and models. Geochim. Cosmochim. Acta 62, 3337–3347] with apparent mineral/clinopyroxene partition coefficients as observed in natural high-pressure metamorphic rocks Marschall et al. [Marschall, H.R., Altherr, R., Ludwig, T., Kalt, A., Gméling, K., Kasztovszky, Zs., 2006a. Partitioning and budget of Li, Be and B in high-pressure metamorphic rocks. Geochim. Cosmochim. Acta 70, 4750–4769] results in a set of mineral/fluid partition coefficients for high-pressure metamorphic minerals. Mineral modes of altered oceanic crust as a function of pressure and temperature along a given subduction path can be derived from thermodynamic calculations using the program PerpleX. Combination of these modes with mineral/fluid partition coefficients results in whole rock/fluid partition coefficients at any stage of the P–T path including information on the amount of fluid released at any depth. Based on these data, the concentrations of Li, Be and B in subducting rocks and released fluids along a given P–T path can be modelled. The derived information on B concentrations in rocks and fluids are combined with the temperature-dependent fractionation of B isotopes in order to model the B isotopic evolution of subducting rocks and released fluids. Model calculations are performed for two slightly different chemical compositions (hydrous MORB without K and with 0.5 wt.% K2O), in order to demonstrate the impact of phengite on the boron budget. Provided the necessary input data are available, the concept of such a model could be employed to quantify the trace element release from the slab from any lithology along any reasonable P–T path.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...