GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    ISSN: 1574-6976
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Many countries strive to reduce the emissions of nitrogen compounds (ammonia, nitrate, NOx) to the surface waters and the atmosphere. Since mainstream domestic wastewater treatment systems are usually already overloaded with ammonia, a dedicated nitrogen removal from concentrated secondary or industrial wastewaters is often more cost-effective than the disposal of such wastes to domestic wastewater treatment. The cost-effectiveness of separate treatment has increased dramatically in the past few years, since several processes for the biological removal of ammonia from concentrated waste streams have become available. Here, we review those processes that make use of new concepts in microbiology: partial nitrification, nitrifier denitrification and anaerobic ammonia oxidation (the anammox process). These processes target the removal of ammonia from gases, and ammonium-bicarbonate from concentrated wastewaters (i.e. sludge liquor and landfill leachate). The review addresses the microbiology, its consequences for their application, the current status regarding application, and the future developments.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The biological nitrogen cycle is a complex interplay between many microorganisms catalyzing different reactions. For a long time, ammonia and nitrite oxidation by chemolithoautotrophic nitrifiers were thought to be restricted to oxic environments and the metabolic flexibility of these organisms seemed to be limited. The discovery of a novel pathway for anaerobic ammonia oxidation by Planctomyces (anammox) and the finding of an anoxic metabolism by ‘classical’Nitrosomonas-like organisms showed that this is no longer valid. The aim of this review is to summarize these novel findings in nitrogen conversion and to discuss the ecological importance of these processes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: In the Completely Autotrophic Nitrogen removal Over Nitrite (CANON) process, aerobic and anaerobic ammonia oxidizing bacteria cooperate to remove ammonia in one oxygen-limited reactor. Kinetic studies, microsensor analysis, and fluorescence in situ hybridization on CANON biomass showed a partial differentiation of processes and organisms within and among aggregates. Under normal oxygen-limited conditions (∼5 μM O2), aerobic ammonia oxidation (nitrification) was restricted to an outer shell (〈100 μm) while anaerobic ammonia oxidation (anammox) was found in the central anoxic parts. Larger type aggregates (〉500 μm) accounted for 68% of the anammox potential whereas 65% of the nitrification potential was found in the smaller aggregates (〈500 μm). Analysis with ∼5 μM O2 microsensors showed that the thickness of the activity zones varied as a function of bulk O2 and NO−2 concentrations and flow rate.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Antonie van Leeuwenhoek 73 (1998), S. 271-278 
    ISSN: 1572-9699
    Keywords: Nitrosomonas ; cell-free extracts ; anaerobic ammonia oxidation ; KS values ; nitrogen dioxide ; nitric oxide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cell-free extracts of Nitrosomonas eutropha oxidized ammonia to nitrite with NO2 (N2O4) as electron acceptor. The ammonia oxidation activity was shown to be sensitive against oxygen. In the absence of oxygen ammonia and NO2 were consumed in a ratio of approximately 1:2 and hydroxylamine occurred as an intermediate. NO was released in amounts equimolar to the consumption of NO2. After passing the cell suspension through a French pressure cell and fractionating it by density gradient centrifugation using a linear sucrose gradient, two soluble and two membrane fractions were detectable. Highest ammonia oxidation activity was measured in the membrane fractions and highest hydroxylamine oxidation activity in the soluble fractions. The KS values of the ammonia oxidizing system in cell-free extracts was about 20 μm NH3 and remained unchanged between pH 7.25 to 8.25.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-072X
    Keywords: Nitrosomonas ; Lithotrophic and mixotrophic nitrification ; Oxygen limitation ; Aerobic and anaerobic denitrification ; Nitrous oxide ; Dinitrogen Hydroxylamine ; Hydrogen ; Ammonium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cells of the obligately lithotrophic species Nitrosomonas europaea and Nitrosomonas eutropha were able to nitrify and denitrify at the same time when grown under oxygen limitation. In addition to oxygen, nitrite was used as an electron acceptor. The simultaneous nitrification and denitrification resulted in significant formation of the gaseous N-compounds nitrous oxide and dinitrogen, causing significant nitrogen loss. In mixed cultures of N. europaea and various chemoorganotrophic bacteria, the nitrogen loss was strongly influenced by the partners growing under oxygen limitation. Under anoxic conditions, pure cultures of N. eutropha were able to denitrify with molecular hydrogen as electron donor and nitrite as the only electron acceptor in a sulfide-reduced complex medium. The increase of cell numbers was directly coupled to nitrite reduction. Nitrous oxide and dinitrogen were the only detectable end products. In pure cultures of N. eutropha and mixed cultures of N. eutropha and Enterobacter aerogenes, ammonium and nitrite disappeared slowly at a molar ratio of about one when oxygen was absent. However, under these conditions cell growth was not measurable.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-072X
    Keywords: Key wordsNitrosomonas ; Lithotrophic and mixotrophic nitrification ; Oxygen limitation ; Aerobic and anaerobic denitrification ; Nitrous oxide ; Dinitrogen ; Hydroxylamine ; Hydrogen ; Ammonium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cells of the obligately lithotrophic species Nitrosomonas europaea and Nitrosomonas eutropha were able to nitrify and denitrify at the same time when grown under oxygen limitation. In addition to oxygen, nitrite was used as an electron acceptor. The simultaneous nitrification and denitrification resulted in significant formation of the gaseous N-compounds nitrous oxide and dinitrogen, causing significant nitrogen loss. In mixed cultures of N. europaea and various chemoorganotrophic bacteria, the nitrogen loss was strongly influenced by the partners growing under oxygen limitation. Under anoxic conditions, pure cultures of N. eutropha were able to denitrify with molecular hydrogen as electron donor and nitrite as the only electron acceptor in a sulfide-reduced complex medium. The increase of cell numbers was directly coupled to nitrite reduction. Nitrous oxide and dinitrogen were the only detectable end products. In pure cultures of N. eutropha and mixed cultures of N. eutropha and Enterobacter aerogenes, ammonium and nitrite disappeared slowly at a molar ratio of about one when oxygen was absent. However, under these conditions cell growth was not measurable.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 167 (1997), S. 106-111 
    ISSN: 1432-072X
    Keywords: Key wordsNitrosomonas ; Anaerobic ammonia ; oxidation ; Anaerobic cell growth ; Nitrogen dioxide ; Nitric oxide ; Nitrous oxide ; Dinitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Nitrosomonas eutropha, an obligately lithoautotrophic bacterium, was able to nitrify and denitrify simultaneously under anoxic conditions when gaseous nitrogen dioxide (NO2) was supplemented to the atmosphere. In the presence of gaseous NO2, ammonia was oxidized, nitrite and nitric oxide (NO) were formed, and hydroxylamine occurred as an intermediate. Between 40 and 60% of the produced nitrite was denitrified to dinitrogen (N2). Nitrous oxide (N2O) was shown to be an intermediate of denitrification. Under an N2 atmosphere supplemented with 25 ppm NO2 and 300 ppm CO2, the amount of cell protein increased by 0.87 mg protein per mmol ammonia oxidized, and the cell number of N. eutropha increased by 5.8 × 109 cells per mmol ammonia oxidized. In addition, the ATP and NADH content increased by 4.3 μmol ATP (g protein)–1 and 6.3 μmol NADH (g protein)–1 and was about the same in both anaerobically and aerobically grown cells. Without NO2, the ATP content decreased by 0.7 μmol (g protein)–1, and the NADH content decreased by 1.2 μmol (g protein)–1. NO was shown to inhibit anaerobic ammonia oxidation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Antonie van Leeuwenhoek 77 (2000), S. 49-55 
    ISSN: 1572-9699
    Keywords: ammonia oxidation ; nitric oxide ; nitrogen dioxide ; Nitrosomonas
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Nitrification by the obligately lithoautotrophic ammonia oxidizer Nitrosomonas eutropha was significantly inhibited when nitric oxide was removed from the culture medium by means of intensive aeration and turbulence. Nearly complete recovery of ammonia oxidation could be achieved by adding 100 ppm NO to the supplied air. Inhibition of ammonia oxidation occurred also upon addition of the NO binding agens 2,3-Dimercapto-1-propane-sulfonic acid (DMPS). Recovery of ammonia oxidation occurred within 3 h in the presence of 100 ppm NO and within 76 h in the absence of externally added NO. In co-cultures of N. eutropha and the NO detoxifying bacterium Pseudomonas PS88, hardly any nitrification was detectable and release of NO was extremely low when the heterotroph was provided with an organic substrate. When cells of Pseudomonas PS88 were added to a mixotrophically nitrifying culture of N. eutropha the release of NO decreased drastically upon the addition and ammonia oxidation ceased. These results confirm for the first time the significance of NO in the course of ammonia oxidation by N. eutropha.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-03-25
    Description: Tailored parallel-stripe magnetic domains with antiparallel magnetizations in adjacent domains along the long stripe axis have been fabricated in an IrMn/CoFe Exchange Bias thin film system by 10 keV He + -ion bombardment induced magnetic patterning. Domain walls between these domains are of Néel type and asymmetric as they separate domains of different anisotropies. X-ray magnetic circular dichroism asymmetry images were obtained by x-ray photoelectron emission microscopy at the Co/Fe L 3 edges at the synchrotron radiation source BESSY II. They revealed Néel-wall tail widths of 1  μ m in agreement with the results of a model that was modified in order to describe such walls. Similarly obtained domain core widths show a discrepancy to values estimated from the model, but could be explained by experimental broadening. The rotation senses in adjacent walls were determined, yielding unwinding domain walls with non-interacting walls in this layer system.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...