GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: A dual isotope labelling technique was used to follow the distribution of carbon and phosphorus in plankton microcosms containing autotrophs (Tetraselmis sp.), heterotrophic bacteria and herbivores (Brachionus plicatilis) at eight different total-P concentrations. P:C ratios of algae, bacteria and dissolved matter, as well as the general accumulation of degradable dissolved organic carbon, indicated that both the autotrophs and heterotrophic bacteria were P-limited in all microcosms. According to the theory, such coexistence should only be possible if bacteria have higher predation losses than algae, which was definitely not the case in our experiment. However, data are consistent with the assumption that bacteria are superior in P uptake but have a poor ability to retain acquired P, which would promote coexistence in a patchy P-supply environment resulting from nutrient regeneration by metazoan grazers.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: In the Arctic Ocean ice algae constitute a key ecosystem component and the ice algal spring bloom a critical event in the annual production cycle. The bulk of ice algal biomass is usually found in the bottom few cm of the sea ice and dominated by pennate diatoms attached to the ice matrix. Here we report a red tide of the phototrophic ciliate Mesodinium rubrum located at the ice-water interface of newly formed pack ice of the high Arctic in early spring. These planktonic ciliates are not able to attach to the ice. Based on observations and theory of fluid dynamics, we propose that convection caused by brine rejection in growing sea ice enabled M. rubrum to bloom at the ice-water interface despite the relative flow between water and ice. We argue that red tides of M. rubrum are more likely to occur under the thinning Arctic sea ice regime
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-04-06
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2021-07-27
    Description: Phytoplankton blooms in the Arctic Ocean's seasonal sea ice zone are expected to start earlier and occur further north with retreating and thinning sea ice cover. The current study is the first compilation of phytoplankton bloom development and fate in the seasonally variable sea ice zone north of Svalbard from winter to late summer, using short-term sediment trap deployments. Clear seasonal patterns were discovered, with low winter and pre-bloom phytoplankton standing stocks and export fluxes, a short and intense productive season in May and June, and low Chl a standing stocks but moderate carbon export fluxes in the autumn post-bloom conditions. We observed intense phytoplankton blooms with Chl a standing stocks of 〉350 mg m(-2) below consolidated sea ice cover, dominated by the prymnesiophyte Phaeocystis poucheti. The largest vertical organic carbon export fluxes to 100 m, of up to 513 mg C m(-2) day-1, were recorded at stations dominated by diatoms, while those dominated by P. poucheti recorded carbon export fluxes up to 310 mg C m(-2) day(-1). Fecal pellets from krill and copepods contributed a substantial fraction to carbon export in certain areas, especially where blooms of P. pouchetii dominated and Atlantic water advection was prominent. The interplay between the taxonomic composition of protist assemblages, large grazers, distance to open water, and Atlantic water advection was found to be crucial in determining the fate of the blooms and the magnitude of organic carbon exported out of the surface water column. Previously, the marginal ice zone was considered the most productive region in the area, but our study reveals intense blooms and high export events in ice-covered waters. This is the first comprehensive study on carbon export fluxes for under-ice phytoplankton blooms, a phenomenon suggested to have increased in importance under the new Arctic sea ice regime.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-18
    Description: The importance of newly formed sea ice in spring is likely to increase with formation of leads in a more dynamic Arctic icescape. We followed the ice algal species succession in young ice (≤0.27m) in spring at high temporal resolution (sampling every second day for 1 month in May–June 2015) in the Arctic Ocean north of Svalbard. We document the early development of the ice algal community based on species abundance and chemotaxonomic marker pigments, and relate the young-ice algal community to the communities in the under-ice water column and the surrounding older ice. The seeding source seemed to vary between algal groups. Dinoflagellates were concluded to originate from the water column and diatoms from the surrounding older ice, which emphasizes the importance of older ice as a seeding source over deep oceanic regions and in early spring when algal abundance in the water column is low. In total, 120 taxa (80 identified to species or genus level) were recorded in the young ice. The protist community developed over the study period from a ciliate, flagellate, and dinoflagellate dominated community to one dominated by pennate diatoms. Environmental variables such as light were not a strong driver for the community composition, based on statistical analysis and comparison to the surrounding thicker ice with low light transmission. The photoprotective carotenoids to Chl a ratio increased over time to levels found in other high-light habitats, which shows that the algae were able to acclimate to the light levels of the thin ice. The development into a pennate diatom-dominated community, similar to the older ice, suggests that successional patterns tend toward ice-associated algae fairly independent of environmental conditions like light availability, season or ice type, and that biological traits, including morphological and physiological specialization to the sea ice habitat, play an important role in colonization of the sea ice environment. However, recruitment of ice-associated algae could be negatively affected by the ongoing loss of older ice, which acts as a seeding repository.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-01-24
    Description: The Arctic icescape is rapidly transforming from a thicker multiyear ice cover to a thinner and largely seasonal first-year ice cover with significant consequences for Arctic primary production. One critical challenge is to understand how productivity will change within the next decades. Recent studies have reported extensive phytoplankton blooms beneath ponded sea ice during summer, indicating that satellite-based Arctic annual primary production estimates may be significantly underestimated. Here we present a unique time-series of a phytoplankton spring bloom observed beneath snow-covered Arctic pack ice. The bloom, dominated by the haptophyte algae Phaeocystis pouchetii, caused near depletion of the surface nitrate inventory and a decline in dissolved inorganic carbon by 16 ± 6 g C m−2. Ocean circulation characteristics in the area indicated that the bloom developed in situ despite the snow-covered sea ice. Leads in the dynamic ice cover provided added sunlight necessary to initiate and sustain the bloom. Phytoplankton blooms beneath snow-covered ice might become more common and widespread in the future Arctic Ocean with frequent lead formation due to thinner and more dynamic sea ice despite projected increases in high-Arctic snowfall. This could alter productivity, marine food webs and carbon sequestration in the Arctic Ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Biogeosciences 122 (2017): 1529–1548, doi:10.1002/2016JG003668.
    Description: During the Norwegian young sea ICE expedition (N-ICE2015) from January to June 2015 the pack ice in the Arctic Ocean north of Svalbard was studied during four drifts between 83° and 80°N. This pack ice consisted of a mix of second year, first year, and young ice. The physical properties and ice algal community composition was investigated in the three different ice types during the winter-spring-summer transition. Our results indicate that algae remaining in sea ice that survived the summer melt season are subsequently trapped in the upper layers of the ice column during winter and may function as an algal seed repository. Once the connectivity in the entire ice column is established, as a result of temperature-driven increase in ice porosity during spring, algae in the upper parts of the ice are able to migrate toward the bottom and initiate the ice algal spring bloom. Furthermore, this algal repository might seed the bloom in younger ice formed in adjacent leads. This mechanism was studied in detail for the dominant ice diatom Nitzschia frigida. The proposed seeding mechanism may be compromised due to the disappearance of older ice in the anticipated regime shift toward a seasonally ice-free Arctic Ocean.
    Description: Norwegian Research Council Grant Number: 244646; Norwegian Ministry of Climate and Environment Grant Number: N-ICE; Norwegian Research Council Grant Number: 221961; Norwegian Ministry of Foreign Affairs Grant Number: ID Arctic; Norwegian Ministry of Foreign Affairs and Ministry of Climate and Environment, Norway; Polish-Norwegian Research Program Grant Number: Pol-Nor/197511/40/2013; Research Council of Norway project STASIS Grant Number: 221961; Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant Canada Foundation for Innovation Investment in Science Fund; Research Council of Norway project Boom or Bust Grant Number: 244646; Centre of Ice, Climate and Ecosystems
    Keywords: Ice algae ; Arctic ; Sea ice ; N-ICE ; Multiyear ice ; Seeding
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 7 (2017): 40850, doi:10.1038/srep40850.
    Description: The Arctic icescape is rapidly transforming from a thicker multiyear ice cover to a thinner and largely seasonal first-year ice cover with significant consequences for Arctic primary production. One critical challenge is to understand how productivity will change within the next decades. Recent studies have reported extensive phytoplankton blooms beneath ponded sea ice during summer, indicating that satellite-based Arctic annual primary production estimates may be significantly underestimated. Here we present a unique time-series of a phytoplankton spring bloom observed beneath snow-covered Arctic pack ice. The bloom, dominated by the haptophyte algae Phaeocystis pouchetii, caused near depletion of the surface nitrate inventory and a decline in dissolved inorganic carbon by 16 ± 6 g C m−2. Ocean circulation characteristics in the area indicated that the bloom developed in situ despite the snow-covered sea ice. Leads in the dynamic ice cover provided added sunlight necessary to initiate and sustain the bloom. Phytoplankton blooms beneath snow-covered ice might become more common and widespread in the future Arctic Ocean with frequent lead formation due to thinner and more dynamic sea ice despite projected increases in high-Arctic snowfall. This could alter productivity, marine food webs and carbon sequestration in the Arctic Ocean.
    Description: This study was supported by the Centre for Ice, Climate and Ecosystems (ICE) at the Norwegian Polar Institute, the Ministry of Climate and Environment, Norway, the Research Council of Norway (projects Boom or Bust no. 244646, STASIS no. 221961, CORESAT no. 222681, CIRFA no. 237906 and AMOS CeO no. 223254), and the Ministry of Foreign Affairs, Norway (project ID Arctic), the ICE-ARC program of the European Union 7th Framework Program (grant number 603887), the Polish-Norwegian Research Program operated by the National Centre for Research and Development under the Norwegian Financial Mechanism 2009–2014 in the frame of Project Contract Pol-Nor/197511/40/2013, CDOM-HEAT, and the Ocean Acidification Flagship program within the FRAM- High North Research Centre for Climate and the Environment, Norway.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...