GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-02-02
    Description: Based on swath bathymetry, sediment echosounding, seismic profiling and sediment coring we present results of the RV „Polarstern“ cruise ARK-XIII/3 (2008) and RV "Araon" cruise ARA02B (2012), which investigated an area between the Chukchi Borderland and the East Siberian Sea between 165°W and 170°E. At the southern end of the Mendeleev Ridge, close to the Chukchi and East Siberian shelves, evidence is found for the existence of Pleistocene ice sheets/ice shelves, which have grounded several times in up to 1200 m present water depth. We found mega-scale glacial lineations associated with deposition of glaciogenic wedges and debris-flow deposits indicative of sub-glacial erosion and deposition close to the former grounding lines. Glacially lineated areas are associated with large-scale erosion, accentuated by a conspicuous truncation of pre-glacial strata typically capped with mostly thin layers of diamicton draped by pelagic sediments. Our tentative age model suggests that the youngest and shallowest grounding event of an ice sheet should be within Marine Isotope Stage (MIS) 3. The oldest and deepest event predates MIS 6. According to our results, ice sheets of more than one km in thickness continued onto, and likely centered over, the East Siberian Shelf. They were possibly linked to previously suggested ice sheets on the Chukchi Borderland and the New Siberian Islands. We propose that the ice sheets extended northward as thick ice shelves, which grounded on the Mendeleev Ridge to an area up to 78°N within MIS 5 and/or earlier. These results have important implication for the former distribution of thick ice masses in the Arctic Ocean during the Pleistocene. They are relevant for global sea-level variations, albedo, ocean-atmosphere heat exchange, freshwater export from the Arctic Ocean at glacial terminations and the formation of submarine permafrost. The existence of km-thick Pleistocene ice sheets in the western Arctic Ocean during glacial times predating that of the Last Glacial Maximum (LGM) also implies significantly different atmospheric circulation patterns, in particular availability and distribution of moisture during pre-LGM glaciations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-01-21
    Description: The present study combines data of microbial assemblages with high-resolution paleoceanographic records from Core GC1 recovered in the Chukchi Sea. For the first time, we have demonstrated that microbial habitat preferences are closely linked to Holocene paleoclimate records, and found geological, geochemical, and microbiological evidence for the inference of the sulphate-methane transition zone (SMTZ) in the Chukchi Sea. In Core GC1, the layer of maximum crenarchaeol concentration was localized surrounding the SMTZ. The vertically distributed predominant populations of Gammaproteobacteria and Marine Group II Euryarchaeota (MG-II) were consistent with patterns of the known global SMTZs. MG-II was the most prominent archaeal group, even within the layer of elevated concentrations of crenarchaeol, an archaeal lipid biomarker most commonly used for Marine Group I Thaumarchaeota (MG-I). The distribution of MG-I and MG-II in Core GC1, as opposed to the potential contribution of MG-I to the marine tetraether lipid pool, suggests that the application of glycerol dibiphytanyl glycerol tetraethers (GDGT)-based proxies needs to be carefully considered in the subsurface sediments owing to the many unknowns of crenarchaeol. In conclusion, microbiological profiles integrated with geological records seem to be useful for tracking microbial habitat preference, which reflect climate-triggered changes from the paleodepositional environment.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-10-15
    Description: Surface water characteristics of the Beaufort Sea have global climate implications during the last deglaciation and the Holocene, as (1) sea ice is a critical component of the climate system and (2) Laurentide Ice Sheet meltwater discharges via the Mackenzie River to the Arctic Ocean and further, to its outflow near the deep-water source area of the Atlantic Meridional Overturning Circulation. Here we present high-resolution biomarker records from the southern Beaufort Sea. Multi-proxy biomarker reconstruction suggests that the southern Beaufort Sea was nearly ice-free during the deglacial to Holocene transition, and a seasonal sea-ice cover developed during the mid-late Holocene. Superimposed on the long-term change, two events of high sediment flux were documented at ca. 13 and 11 kyr BP, respectively. The first event can be attributed to the Younger Dryas flood and the second event is likely related to a second flood and/or coastal erosion.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-08-03
    Description: High-resolution seafloor mapping provides insights into the dynamics of past ice sheets/ice shelves on high-latitude continental margins. Geological/geophysical studies in the Arctic Ocean suggest widespread Pleistocene ice grounding on the Chukchi–East Siberian continental margin. However, flow directions, timing, and behavior of these ice masses are not yet clear due to insufficient data. We present a combined seismostratigraphic and morphobathymetric analysis of the Chukchi Rise off the northwestern Chukchi margin using the densely acquired subbottom profiler (SBP) and multibeam echosounder (MBES) data. Comparison with deeper airgun seismic records shows that the SBP data cover most of the glaciogenic stratigraphy possibly spanning ca. 0.5–1Ma. Based on the stratigraphic distribution and geometry of acoustically transparent glaciogenic diamictons, the lateral and vertical extent of southern- sourced grounded ice became smaller over time. The older deposits are abundant as debris lobes on the slope contributing to a large trough mouth fan, whereas younger grounding-zone wedges are found at shallower depths. MBES data show two sets of mega-scale lineations indicating at least two fast ice- streaming events of different ages. Contour-parallel recessional morainic ridges mark a stepwise retreat of the grounded ice margin, likely controlled by rising sea levels during deglaciation(s). The different inferred advance and retreat directions of the southern-sourced ice reflect complex geomorphic settings. The overall picture shows that the Chukchi Rise was an area where different ice streams had complex interactions. In addition to glaciogenic deposits, we identify a number of related or preceding seabed features including mounds, gullies/channels, and sediment waves.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-10-30
    Description: Since about 15 years a growing number of evidence is found in water depth up to more than 1000 m of the Arctic Ocean that grounding of ice has occurred in various places including the "Beringian" continental margin north of the present Chukchi and East-Siberian seas and the Lomonosov Ridge. These landforms include moraines, drumlinized features, glacigenic debris flows, till wedges, mega-scale glacial lineations (MSGL), and iceberg plough marks (Polyak et al. 2001, Niessen et al. 2013, Dove et al. 2014, Jakobsson et al. 2014). They suggest that thick ice has occurred not only on nearly all margins of the Arctic Ocean but also covered pelagic areas. In a recent paper, Jakobsson et al. (2016) present more evidence of ice-shelf groundings on bathymetric highs in the central Arctic Ocean, thereby revitalising an old modelling concept of a kilometre-thick ice shelf extending over the entire central Arctic Ocean (Hughes et al. 1977) now dated to Marine Isotope Stage (MIS) 6. Other (including our) studies, however, suggest that the pattern, and, in particular, the timing of these glaciations is more complex. Most recent discoveries on the Lomonosov Ridge have not only gained different information on Pleistocene glaciations but also allowed for the first time to reconstruct upper Miocene Arctic Ocean sea-ice and SST conditions. This became possible since submarine sliding (likely associated with ice grounding) led to removal of younger sediments from steep headwalls and thus exhumation of Miocene to early Quaternary sediments close to the seafloor, allowing the retrieval and analysis of such old sediments by gravity coring (Stein et al. 2016). Submarine glacial landforms from the western and central Arctic Ocean were discovered and investigated during the cruises of RV "Polarstern" in 2008 and 2014, and RV "Araon" in 2012 and 2015. Orientations of some of these landforms suggest that thick ice has flown north into the deep Arctic Ocean from the continental margin of the East Siberian Sea repeatedly (Niessen et al. 2013), thereby grounded on plateaus and seamounts of the Medeleev Ridge. In addition, hydro-acoustic data is presented from the Lomonosov Ridge (Siberian side to close to the North Pole), which support the hypothesis of widespread grounding of ice in the Arctic Ocean, of which the sources are still difficult to determine. The data suggest that thick ice-shelves could have developed from continental ice sheets on a nearly circum-arctic scale, which disintegrated into large icebergs during glacial terminations. On the slopes of the East Siberian Sea and/or on the Arlis Plateau, three northerly-directed ice advances occurred, which are dated by sediment cores using the chronology of brown layers (B1 to B7) as suggested by Stein et al. (2010). According to our age model, the latest advance is slightly older than B2 (MIS-3/4), which has been interpreted as MIS-6 by Jakobsson et al. (2016). A larger well-constrained glaciation has occurred during MIS-4, of which an ice shelf grounded to 900 m on the Arlis Plateau. In the western Arctic Ocean, the oldest datable ice advance has an intra-MIS-5 age. In our data, the chronology of older ice advances along the East Siberian margin are not well constrained but may extend back as far as MIS-16. In contrast, cores from the southern and central Lomonosov Ridge indicate that the youngest ice grounding there has occurred during MIS-6. This grounding was less intense than previous ice-shelf groundings in the area, of which the chronology remains speculative until longer cores become available. Along the Lomonosov Ridge, detailed bathymetric mapping between 81° and 84°N exhibit numerous amphitheatre-like slide scars, under which large amounts of Cenozoic sediments were remobilized into mass-wasting features on both the Makarov and Amundsen sides of the ridge. In areas shallower than 1000 metres, slide scars appear to be associated with streamlined glacial lineations, whereby some of the bedforms have been removed by sliding. It appears that at least some of the mass-wasting events have been triggered by moving and/or loading of grounded ice. Sub-bottom seismic profiling discovered at least three generations of debris-flow deposits near the ridge, which were generated by the slides. In places, the nearly randomly distributed slide scars and debris-flow deposits make it hard to interpret past ice-flow directions from landforms and re-deposited sediments. The pattern allows interpretation of both directions off East Siberia (e.g. Jakobsson et al. 2016) and off Eurasia (e.g. Polyak et al. 2001) towards the central Arctic Ocean. Underneath the slide scars escarpments of up to 400 m in height were formed. Near the southern end of the Lomonosov Ridge the last exhumation of old sediments has occurred during MIS-6. Some of the old sediments recovered in 2014 were studied in more detail (Stein et al., 2016). We can show for the first time that the mid/late Miocene central Arctic Ocean was relatively warm (4-7°C) and ice-free during summer, but sea ice occurred during spring and autumn/winter. A comparison of our biomarker proxy data with Miocene climate simulations seems to favour relatively high late Miocene atmospheric CO2 concentrations. References Dove, D., Polyak, L. & Coakley, B., 2014. Widespread, multi-source glacial erosion on the Chukchi margin, Arctic Ocean. Quat. Sci. Rev. 92, 112–122 Hughes, T. J., Denton, G. H. & Grosswald, M. G., 1977. Was there a late-Würm Arctic ice sheet? Nature, 266, 596–602 Jakobsson, M. et al., 2014. Arctic Ocean glacial history. Quat. Sci. Rev. 92, 40-67 Jakobsson, M., et al., 2016. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation. Nat. Comm., 7, 10365, DOI: 10.1038/ncomms10365, 1-10 Niessen, F. et al., 2013. Repeated Pleistocene glaciation of the East Siberian continental margin. Nat. Geosci. 6, 842–846 Polyak, L., Edwards, M. H., Coakley, B. J. & Jakobsson, M., 2001. Ice shelves in the Pleistocene Arctic Ocean inferred from glaciogenic deep-sea bedforms. Nature 410, 453–459 Stein, R., Matthiessen, J., Niessen, F., Krylov, A., Nam, S., Bazhenova, E., 2010. Towards a better (litho-) stratigraphy and reconstruction of Quaternary paleoenvironment in the Amerasian Basin (Arctic Ocean), Polarforschung, 79 (2), 97-121 Stein, R., K. Fahl, Schreck, M., Knorr, G., Niessen, F., Forwick, M., Gebhardt, C., Jensen, L., Kaminski, M., Kopf, A., Matthiessen, J., Jokat, W., and Lohmann, G., 2016. Evidence for ice-free summers in the late Miocene central Arctic Ocean. Nature Communications 7:11148, doi:10.1038/ncomms11148.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-07-05
    Description: Little is known about the production of fluorescent dissolved organic matter (FDOM) in the anoxic oceanic sediments. In this study, sediment pore waters were sampled from four different sites in the Chukchi-East Siberian Seas area to examine the bulk dissolved organic carbon (DOC) and their optical properties. The production of FDOM, coupled with the increase of nutrients, was observed above the sulfate-methane-transition-zone (SMTZ). The presence of FDOM was concurrent with sulfate reduction and increased alkalinity (R2 〉 0.96, p 〈 0.0001), suggesting a link to organic matter degradation. This inference was supported by the positive correlation (R2 〉 0.95, p 〈 0.0001) between the net production of FDOM and the modeled degradation rates of particulate organic carbon sulfate reduction. The production of FDOM was more pronounced in a shallow shelf site S1 with a total net production ranging from 17.9 to 62.3 RU for different FDOM components above the SMTZ depth of ca. 4.1 mbsf, which presumably underwent more accumulation of particulate organic matter than the other three deeper sites. The sediments were generally found to be the sources of CDOM and FDOM to the overlying water column, unearthing a channel of generally bio-refractory and pre-aged DOM to the oceans.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-02-07
    Description: Over many years there was a general acceptance that thick ice sheets of marine isotope stages 2, 4 and 6 were restricted largely to continental Eurasia, Greenland and North America including the adjacent shelves of the Arctic Ocean. With this "Beringia" was understood as an ice-free land bridge between the continents of Asia and America during glacial times with low sea levels and exposed shelves. However, since about 15 years a growing number of evidence is found in water depth up to more than 1000 m that grounding of ice has occurred in various places of the Arctic Ocean since MIS 6 and/or before including the "Beringian" continental margin north of the present Chukchi and East-Siberian seas. With the decline in Arctic Ocean summer sea ice during the last decade it has been possible to hydro-acoustically survey areas so far sparsely investigated because of operational constrains. Glacial landforms were discovered on many continental slopes as well as ridges and seamounts of the Arctic Ocean, which rise up to less than about 1000 m below present sea level. These landforms include moraines, drumlinized features, glacigenic debris flows, till wedges, mega-scale glacial lineations (MSGL), and iceberg plough marks. They suggest that thick ice has occurred not only on nearly all margins of the Arctic Ocean but also covered pelagic areas. In our studies we present submarine glacial landforms from the western and central Arctic Ocean, which are interpreted as a result of a complex pattern of Pleistocene glaciations along the continental margin of the East Siberian Sea. This was discovered during the cruises of RV "Polarstern" in 2008 and RV "Araon" in 2012. Orientations of these landforms suggest thick ice has flown north onto the deep Arctic Ocean, thereby grounded on plateaus and seamounts of the Medeleev Ridge. In addition, during RV "Polarstern" cruise in 2014, hydro-acoustic data is presented from the Lomonosov Ridge (Siberian side to close to the North Pole), which support the hypothesis of widespread grounding of ice in the Arctic Ocean from different sources. The data suggest that thick ice-shelves have developed from continental ice sheets on a nearly circum-arctic scale. These ice shelves extended far north and covered large areas of the Arctic Ocean. Further analysis of bathymetric and sub-bottom acoustic data is needed to interpret ice-flow directions. Also, it now depends on the stratigraphical analysis of existing and future sediment cores to find out whether or not these ice shelves have occurred contemporaneously and when the individual grounding events have occurred.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    European Geophysical Union
    In:  EPIC3EGU General Assembly, Vienna, 2015-04-13-2015-04-17European Geophysical Union
    Publication Date: 2016-02-09
    Description: Recently glacial landforms were presented and interpreted as complex pattern of Pleistocene glaciations in the western Arctic Ocean along the continental margin of the East Siberian and Chukchi seas, (Niessen et al. 2013, Dove et al. 2014). These landforms include moraines, drumlins, glacigenic debris flows, till wedges and mega-scale glacial lineations. Orientations of some of the landforms suggest the presence of former ice sheets on the Chukchi Borderland and the East Siberian shelf. Here we present a tentative age model for some of the younger glacial events by correlation of sediment cores with glacial landforms as seen in subbottom profiles. The database was obtained during RV „Polarstern“ cruise ARK-XIII/3 (2008) and RV "Araon" cruise ARA03B (2012), which investigated an area between the Chukchi Borderland and the East Siberian Sea between 165°W and 170°E. The stratigraphic correlation of sediment cores is based on physical properties (wet-bulk density and magnetic susceptibility), lithology and color. The chronology of the area has been proposed by Stein et al. (2010)for a core from the Chukchi Abyssal Plain (PS72/340-5) and includes brown layers B1 to B9 (marine isotope stages MIS 1 to MIS 7), which are used as marker horizons for lateral core correlation. Our tentative age model suggests that the youngest and shallowest (480 m below present water level; mbpwl) grounding event of an ice sheet on the Chukchi Borderland is younger than B2 (interpreted as Last Glacial Maximum; LGM). There is no clear evidence for a LGM glaciation along the East Siberian margin because intensive post LGM iceberg scouring occurred above 350 m present water level. On the slopes of the East Siberian Sea two northerly directed ice advances occurred, both of which are older and younger than B2 and B3, respectively. The younger advance grounded to about 700 m present water depth along the continental slope and the older to 900 m and 1100 m on the Arlis Plateau and the East Siberian continental margin, respectively. We interpret these advances as Middle Weichselian glaciations on the Beringian shelf (MIS 4 to 3). Two older glaciations can be dated as Early Weichselian (MIS 5b to 5d), of which the younger event is older and younger than B3 and B4, respectively. This glaciation can be traced by glacial wedges, streamlined lineations in up to 1200 mbpsl and subglacial diamicton along the East Siberian margin, the Arlis Plateau, and the Mendeleev Ridge. There are at least three older glaciation visible in acoustic images from the East Siberian continental margin, which probably predate the Weichselian. The available cores did not penetrate these events and the ages remain speculative.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    GeoUnion Alfred-Wegener-Stiftung
    In:  EPIC3PAST Gateways: 3rd International Conference and Workshop, Potsdam, Germany, 2015-05-18-2015-05-22TERRA NOSTRA, GeoUnion Alfred-Wegener-Stiftung
    Publication Date: 2016-02-07
    Description: As a relatively new discovery in the western Arctic Ocean, glacial landforms were presented and interpreted as a complex pattern of Pleistocene glaciations along the continental margin of the East Siberian and the Chukchi borderland1,2. These landforms include moraines, drumlinized features, glacigenic debris flows, till wedges, mega-scale glacial lineations (MSGL), and iceberg plough marks. Orientations of some of the landforms suggest the presence of former ice sheets on the Chukchi Borderland and the East Siberian shelf. In seismic and sub-bottom profiles there is evidence that glaciations have occurred repeatedly possibly during the Pleistocene. However, the chronology of most of these western Arctic Ocean glacial periods remained undetermined. Here we present a tentative age model for some of the younger glacial events by correlation of sediment cores with glacial landforms as seen in sub-bottom profiles and swath bathymetry. The database was obtained during RV „Polarstern“ cruise ARK-XIII/3 (2008), RV "Araon" cruises ARA03B (2012), which investigated an area between the Chukchi Borderland and the East Siberian Sea between 165°W and 170°E. The stratigraphic correlation of sediment cores is based on physical properties (wet-bulk density and magnetic susceptibility), lithology and color. The chronology of the area has been proposed by Stein et al.3 for a core from the Chukchi Abyssal Plain (PS72/340-5) and includes brown layers B1 to B9, which are dated and/or interpreted as marine isotope stages MIS 1 to MIS 7. Amongst other stratigraphic features these brown layers are used as marker horizons for lateral core correlation. Our tentative age model suggests that the youngest and shallowest (480 m below present water level; mbpwl) grounding of an ice sheet on the Chukchi Borderland is younger than B2 (interpreted as Last Glacial Maximum; LGM). There is no clear evidence for a LGM glaciation along the East Siberian margin because intensive post LGM (Younger Dryas4) iceberg scouring occurred above 350 mbpsl. On the slopes of the East Siberian Sea two northerly directed ice advances occurred, both of which are older and younger than B2 and B3, respectively. The younger advance grounded to about 700 m present water depth along the continental slope and the older to 900 m and 1100 m on the Arlis Plateau and the East Siberian continental margin, respectively. We interpret these advances as Middle Weichselian glaciations on the Beringian shelf (MIS 4 to 3). Two older glaciations can be dated as Early Weichselian (MIS 5b to 5d), of which the younger event is older and younger than B3 and B4, respectively. These glaciations can be traced by glacial wedges, MSGL in up to 1200 mbpsl and subglacial diamicton along the East Siberian margin, the Arlis Plateau, and the Mendeleev Ridge. On a seamount of the Mendeleev Ridge, at 77°36'N and 800 to 900 mbpsl, streamlined lineations suggest an ice source on the East Siberian Shelf. The related diamicton on top of the seamount is older than B3 and interpreted as relict of a MIS-5a grounded ice shelf. There are at least three glaciation visible in acoustic images from the East Siberian continental margin, which are older than MIS-5a and probably predate the Weichselian. The cores presented here did not penetrate these events and the ages remain speculative until longer cores become available.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...