GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 19 (2006): 3337–3353, doi:10.1175/JCLI3800.1.
    Description: Eleven coupled climate–carbon cycle models used a common protocol to study the coupling between climate change and the carbon cycle. The models were forced by historical emissions and the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 anthropogenic emissions of CO2 for the 1850–2100 time period. For each model, two simulations were performed in order to isolate the impact of climate change on the land and ocean carbon cycle, and therefore the climate feedback on the atmospheric CO2 concentration growth rate. There was unanimous agreement among the models that future climate change will reduce the efficiency of the earth system to absorb the anthropogenic carbon perturbation. A larger fraction of anthropogenic CO2 will stay airborne if climate change is accounted for. By the end of the twenty-first century, this additional CO2 varied between 20 and 200 ppm for the two extreme models, the majority of the models lying between 50 and 100 ppm. The higher CO2 levels led to an additional climate warming ranging between 0.1° and 1.5°C. All models simulated a negative sensitivity for both the land and the ocean carbon cycle to future climate. However, there was still a large uncertainty on the magnitude of these sensitivities. Eight models attributed most of the changes to the land, while three attributed it to the ocean. Also, a majority of the models located the reduction of land carbon uptake in the Tropics. However, the attribution of the land sensitivity to changes in net primary productivity versus changes in respiration is still subject to debate; no consensus emerged among the models.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-07
    Description: Cumulative CO2 emissions are a robust predictor of mean temperature increase. However, many societal impacts are driven by exposure to extreme weather conditions. Here, we show that cumulative emissions can be robustly linked to regional patterns of a heat exposure indicator, as well as the resulting socio-economic impacts associated with labour productivity loss in vulnerable sectors. We estimate historical and future increases in heat exposure using simulations from eight Earth System Models. Both the global intensity and spatial pattern of heat exposure evolve linearly with cumulative emissions across scenarios (1%CO2, RCP4.5 and RCP8.5). The pattern of heat exposure at a given level of global temperature increase is strongly affected by non-CO2 forcing. Global non-CO2 greenhouse gas emissions amplify heat exposure, while high local emissions of aerosols moderate it. Considering CO2 forcing only, an annual loss of labour productivity of about 3% of GDP per unit of trillion tonne of carbon emitted is projected. This loss doubles when adding non-CO2 forcing of the RCP8.5 scenario. This represents an economic loss of about 4,400G$ every year (i.e. 0.59$/tCO2), varying across countries with generally higher impact in lower-income countries.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Nature Research
    Publication Date: 2022-11-14
    Description: Tue perception that future climate warming is inevitable stands at the centre of current climate-policy discussions. W e argue that the notion of unavoidable warming owing to inertia in the climate system is based on an incorrect interpretation of climate science. Stable atmospheric concentrations of greenhouse gases would lead to continued warming, but if carbon dioxide emissions could be eliminated entirely, temperatures would quickly stabilize or even decrease over time. Future warming is therefore driven by socio-economic inertia, and is only as inevitable as future emissions. As a consequence, mitigation efforts to minimize future greenhouse-gas emissions can successfully restrict future warming to a level that may avoid dangerous anthropogenic interference with the climate system. Tue challenge of climate mitigation, although daunting, is fully within the scope of human control.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-03-20
    Description: A new model of global climate, ocean circulation, ecosystems, and biogeochemical cycling, including a fully coupled carbon cycle, is presented and evaluated. The model is consistent with multiple observational data sets from the past 50 years as well as with the observed warming of global surface air and sea temperatures during the last 150 years. It is applied to a simulation of the coming two millennia following a business-as-usual scenario of anthropogenic CO2 emissions (SRES A2 until year 2100 and subsequent linear decrease to zero until year 2300, corresponding to a total release of 5100 GtC). Atmospheric CO2 increases to a peak of more than 2000 ppmv near year 2300 (that is an airborne fraction of 72% of the emissions) followed by a gradual decline to ∼1700 ppmv at year 4000 (airborne fraction of 56%). Forty-four percent of the additional atmospheric CO2 at year 4000 is due to positive carbon cycle–climate feedbacks. Global surface air warms by ∼10°C, sea ice melts back to 10% of its current area, and the circulation of the abyssal ocean collapses. Subsurface oxygen concentrations decrease, tripling the volume of suboxic water and quadrupling the global water column denitrification. We estimate 60 ppb increase in atmospheric N2O concentrations owing to doubling of its oceanic production, leading to a weak positive feedback and contributing about 0.24°C warming at year 4000. Global ocean primary production almost doubles by year 4000. Planktonic biomass increases at high latitudes and in the subtropics whereas it decreases at midlatitudes and in the tropics. In our model, which does not account for possible direct impacts of acidification on ocean biology, production of calcium carbonate in the surface ocean doubles, further increasing surface ocean and atmospheric pCO2. This represents a new positive feedback mechanism and leads to a strengthening of the positive interaction between climate change and the carbon cycle on a multicentennial to millennial timescale. Changes in ocean biology become important for the ocean carbon uptake after year 2600, and at year 4000 they account for 320 ppmv or 22% of the atmospheric CO2 increase since the preindustrial era.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...