GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C03018, doi:10.1029/2006JC003485.
    Description: An unstructured grid, finite volume, three-dimensional (3-D) primitive equation coastal ocean model (FVCOM) has been developed for the study of coastal ocean and estuarine circulation by Chen et al. (2003a). The finite volume method used in this model combines the advantage of finite element methods for geometric flexibility and finite difference methods for simple discrete computation. Currents, temperature, and salinity are computed using an integral form of the equations, which provides a better representation of the conservative laws for mass, momentum, and heat. Detailed comparisons are presented here of FVCOM simulations with analytical solutions and numerical simulations made with two popular finite difference models (the Princeton Ocean Model and Estuarine and Coastal Ocean Model (ECOM-si)) for the following idealized cases: wind-induced long-surface gravity waves in a circular lake, tidal resonance in rectangular and sector channels, freshwater discharge onto the continental shelf with curved and straight coastlines, and the thermal bottom boundary layer over the slope with steep bottom topography. With a better fit to the curvature of the coastline using unstructured nonoverlapping triangle grid cells, FVCOM provides improved numerical accuracy and correctly captures the physics of tide-, wind-, and buoyancy-induced waves and flows in the coastal ocean. This model is suitable for applications to estuaries, continental shelves, and regional basins that feature complex coastlines and bathymetry.
    Description: This research was supported by the U.S. GLOBEC Northwest Atlantic/Georges Bank program through NSF grants OCE-0234545, OCE-0227679, NOAA grant NA 160P2323, and NSF CoOP grant OCE-0196543 to C. Chen and NSF OCE-0227679 and the WHOI Smith Chair to R. C. Beardsley. H. Huang and Q. Xu were supported by Chen’s Georgia and South Carolina Sea Grant awards NA06RG0029 and NA960P0113. G. Cowles was supported by the SMAST fishery program through NOAA grants DOC/NOAA/NA04NMF4720332 and DOC/NOAA/NA05NMF4721131.
    Keywords: Finite volume model ; Numerical methods ; Coastal ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-11-04
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chen, C., Qi, J., Liu, H., Beardsley, R., Lin, H., & Cowles, G. A wet/dry point treatment method of FVCOM, part I: stability experiments. Journal of Marine Science and Engineering, 10(7), (2022): 896, https://doi.org/10.3390/jmse10070896.
    Description: A 3-dimensional wet/dry point treatment method was developed for the unstructured-grid Finite-Volume Community Ocean Model (FVCOM). Analytical equations were derived to examine discretized errors that occurred during the flooding/drying process by the wet/dry point treatment for the flooding/drying process. Numerical experiments were carried out for an idealized estuary, including the inter-tidal zone. The model results show that if the ratio of internal to external mode time steps (Isplit) is appropriately selected, FVCOM was capable of simulating the flooding/drying process with sufficient accuracy to ensure the mass conservation. The up-bound limit of Isplit was restricted by the bathymetric slope of the inter-tidal zone, external mode time step, horizontal/vertical resolution, and amplitude of tidal forcing at the open boundary, as well as the thickness of the viscous layer specified in the model. Criteria for time steps via these parameters were derived from these experiments, which provide a helpful guide in selectingIsplit for applying FVCOM to realistic geometric estuaries.
    Description: This research was funded by the Georgia Sea Grant College Program under grant numbers NA26RG0373 and NA66RG0282, the Georgia DNR grants 024409-01 and 026450-01, the NSF Georges Bank/Northwest Atlantic GLOBEC program under grant number NSF-OCE 02-27679, and the SMAST fishery program under the NASA grant number NAG 13-02042.
    Keywords: Ocean hydrodynamical model ; Coastal modeling ; Coastal flooding
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...