GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Publication Date: 2023-02-08
    Description: Detrital muscovite and biotite 40Ar/39Ar analyses are useful tools for studying regional tectonic histories, sediment provenances and paleo-drainage reconstructions. During transport and recycling of detrital micas physical and chemical weathering occurs. This process effects the grain size and age populations ultimately found in river sediments, but is often ignored in provenance studies. Here, we present detrital muscovite and biotite 40Ar/39Ar results of 15 modern sediments from the Yangtze River to address the impact of grainsize on provenance age populations. The beam intensities of 39Ar, formed from 39K by neutron capture reaction during sample irradiation, have been used as an index for grain size. We found that relatively older detrital mica ages of the Yangtze River are often characterized by small 39Ar signals (i.e., grain sizes), and large grain sizes correspond to younger grains. This observation is also revealed by reanalysis of previously reported detrital mica studies in other major river systems (Red and Brahmaputra rivers) and sediments (Scotian Basin, Canada and Antarctic) and probably results from physical and chemical weathering during transport and recycling. Our Yangtze results indicate that detrital muscovite and biotite ages of grainsize ranging from 100 to 1000 μm cover all age components as identified in all dated grains (with a size of 〉100 μm), and thus indicate that detrital mica 40Ar/39Ar analyses should include also small grains from 〉100 μm to reduce the effects of hydraulic sorting and weathering. Grainsizes smaller than 100 μm have not been tested in this study, but will be more difficult to date due to both smaller beam intensities and possible recoil effects.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: Current generation multi-collector mass spectrometers allow for increasingly more precise measurements of small ion beams. The improvement of instrument sensitivity and resolution compared with older generation mass spectrometers has important implications for 40Ar/39Ar dating and allows the expanding of its range of applicability. Thermochronological analysis of detrital modern river sands is a powerful tool for unraveling provenance and exhumation histories of eroding hinterlands. Better instrument sensitivity allows refining the precision of dates for young and small grains, which in turn acknowledge an interpretation of the detrital signals from a wider range of micas. Previous studies have used the 40Ar/39Ar method to assess how the detrital mineral age signals can evolve downstream in the river trunk of an active mountain range. So far, however, there has not been a robust assessment of how grain-size variability can introduce biases in the analysis of age distributions. For example, the white mica signal from the Namche Barwa syntaxis in the eastern Himalaya is interpreted to be diluted downstream from its source due to the admixture of micas from downstream sources to the total population, but grain-size variability biases were not evaluated. Here we use the latest developments in multi-collector noble gas mass spectrometry to (1) test if the precision in the analysis of young and small muscovite samples can be improved by use of new faraday collector amplifier technology and (2) to apply this approach to test the variability of the age distribution as a function of the grain size from five modern rivers samples draining the Eastern Himalaya. The Helix MC plus at VUA is equipped with 1013 Ohm amplifiers on the H2-H1 Faraday cups. We compare the functioning of the 1013 Ohm amplifiers with the 1012 amplifiers on the in-house Drachenfels (DRA) standard. The use of the new 1013 Ohm amplifiers to measure the 40Ar and 39Ar ion beams improved the precision when measuring standards by a factor of two. We show that for larger catchment areas multi grain-size analyses lead to a more complete assessment of the full spectrum of ages obtained from different sources. The analyses of smaller grain sizes (〈 250 μm) show that previous ideas/arguments about the process of dilution of the Namche Barwa syntaxis age signal for muscovite were biased due to the measurement of exclusively larger grain-sizes (〉 250 μm) of the analyzed samples. This outcome potentially has important implications for future provenance studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    NATURE PUBLISHING GROUP
    In:  EPIC3Nature Geoscience, NATURE PUBLISHING GROUP, 5, pp. 735-738, ISSN: 1752-0894
    Publication Date: 2019-07-16
    Description: The origin of hotspot trails ranges controversially1 from deep mantle plumes rising from the core-mantle boundary2 to shallow plate cracking. But these mechanisms cannot explain uniquely the scattered hotspot trails on the 2,000 km-wide southeast Atlantic hotspot swell3, which projects down to one of the Earth’s two largest and deepest regions of slower-than-average seismic wave speed – the Africa Low Shear Wave Velocity Province, which marks a massive thermo-chemical ‘pile’ at the core-mantle boundary4,5,6. Here we use 40Ar/39Ar isotopic ages – and crustal structure and seafloor ages – to show that age progressive hotspot trails formed synchronously across the swell, consistent with African plate motion over plumes rising from the stable edge of a Low Shear Wave Velocity Province. We show also that hotspot trails formed initially only at spreading boundaries at the outer edges of the swell until roughly 44 million years ago, when they started forming across the swell, far from spreading boundaries in lithosphere that was sufficiently weak (young) for plume melts to reach the surface. We conclude that if plume melts formed synchronous age progressive hotspot trails wherever and whenever they could penetrate the swell lithosphere then hotspot trails in the South Atlantic are controlled by an interplay between deep plumes and the motion and structure of the African plate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-16
    Description: Discovering if hotspots observed on the Earth’s surface are explained by underlying plumes rising from the deep mantle or by a shallow plate-cracking mechanism continues to be an essential goal in Earth Science. Key evidence underpinning the mantle plume concept is the existence of narrow, age-progressive volcanic trails recording past plate motion relative to surface hotspots and their deep causal plumes. Using the icebreaker RV Polarstern we sampled scattered hotspot trails on the 2,000 km-wide southeast Atlantic hotspot swell, which projects down to one of the Earth’s two largest and deepest regions of slower-than-average seismic wave speed – the Africa Low Shear Wave Velocity Province – caused by a massive thermo-chemical ‘pile’ on the core-mantle boundary. We showed recently using 40Ar/39Ar isotopic ages – and crustal structure and seafloor ages – that these hotspot trails are age progressive and formed synchronously across the swell, consistent with African plate motion over plumes rising from the stable edge of a Low Shear Wave Velocity Province (LLSVP) (O’Connor et al., 2012). We showed furthermore that hotspot trails formed initially only at spreading boundaries at the outer edges of the swell until roughly 44 million years ago, when they started forming across the swell, far from spreading boundaries in lithosphere that was sufficiently weak (young) for plume melts to reach the surface. We concluded that if plume melts formed synchronous age progressive hotspot trails whenever they could penetrate the lithosphere, then hotspot trails in the South Atlantic are controlled by the interplay between deep plumes and the shallow motion and structure of the African plate. Our observations reveal a plate tectonic-controlled cycle from the creation of deep thermo-chemical piles (LLSVP) and initiation of deep mantle plumes at the CMB to the shallow formation of the resulting hotspot trails. Moreover, suppression of plume melts from venting to the plate surface for tens of millions of years implies that the plumes responsible for the southeast Atlantic hotspot swell and hotspot trails transported more material and heat from the core mantle boundary than measured by hotspot volcanism.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-16
    Description: Discovering if hotspots observed on the Earth’s surface are explained by underlying plumes rising from the deep mantle or by shallow plate-driven processes continues to be an essential goal in Earth Science. Key evidence underpinning the mantle plume concept is the existence of age-progressive volcanic trails recording past plate motion relative to surface hotspots and their causal plumes. Using the icebreaker RV Polarstern, we sampled scattered hotspot trails on the 2,000 km-wide southeast Atlantic hotspot swell, which projects down to one of the Earth’s two largest and deepest regions of slower-than-average seismic wave speed – the Africa Low Shear Wave Velocity Province – caused by a massive thermo-chemical ‘pile’ on the core-mantle boundary.We showed recently using Ar/Ar isotopic ages – and crustal structure and seafloor ages – that these hotspot trails are age progressive and formed synchronously across the swell, consistent with African plate motion over plumes rising from the stable edge of a Low Shear Wave Velocity Province (LLSVP) (O’Connor et al., 2012). We showed furthermore that hotspot trails formed initially only at spreading boundaries at the outer edges of the swell until roughly 44 million years ago, when they started forming across the swell, far from spreading boundaries in lithosphere that was sufficiently weak (young) for plume melts to reach the surface. We concluded that if plume melts formed synchronous age progressive hotspot trails whenever they could penetrate the lithosphere, then hotspot trails in the South Atlantic are controlled by the interplay between deep plumes and the shallow motion and structure of the African plate. If the distribution of hotspot trails reflects where plume melts could or could not penetrate the continental or oceanic lithosphere then plumes could have been active for significantly longer than indicated by their volcanic chains. This provides a mechanism for extended late stage interplay between deep mantle processes and the passive margin and adjacent continents that might explain extensive magmatism, lithospheric thinning and phases of post-rift uplift on continental margins and nearby continents.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-12-02
    Description: Seismological findings show a complex scenario of plume upwellings from a deep thermo-chemical anomaly (superplume) beneath the East African Rift System (EARS). It is unclear if these geophysical observations represent a true picture of the superplume and its influence on magmatism along the EARS. Thus, it is essential to find a geochemical tracer to establish where upwellings are connected to the deep-seated thermo-chemical anomaly. Here we identify a unique non-volatile superplume isotopic signature (‘C’) in the youngest (after 10 Ma) phase of widespread EARS rift-related magmatism where it extends into the Indian Ocean and the Red Sea. This is the first sound evidence that the superplume influences the EARS far from the low seismic velocities in the magma-rich northern half. Our finding shows for the first time that superplume mantle exists beneath the rift the length of Africa from the Red Sea to the Indian Ocean offshore southern Mozambique
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...