GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    In: Marine pollution bulletin, Oxford : Elsevier, 1968, 60(2010), Seite 2187-2196, 0025-326X
    In: volume:60
    In: year:2010
    In: pages:2187-2196
    Type of Medium: Article
    Pages: Ill.
    ISSN: 0025-326X
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-12-21
    Description: Within the COST action EMBOS (European Marine Biodiversity Observatory System) the degree and variation of the diversity and densities of soft-bottom communities from the lower intertidal or the shallow subtidal was measured at 28 marine sites along the European coastline (Baltic, Atlantic, Mediterranean) using jointly agreed and harmonized protocols, tools and indicators. The hypothesis tested was that the diversity for all taxonomic groups would decrease with increasing latitude. The EMBOS system delivered accurate and comparable data on the diversity and densities of the soft sediment macrozoobenthic community over a large-scale gradient along the European coastline. In contrast to general biogeographic theory, species diversity showed no linear relationship with latitude, yet a bell-shaped relation was found. The diversity and densities of benthos were mostly positively correlated with environmental factors such as temperature, salinity, mud and organic matter content in sediment, or wave height, and related with location characteristics such as system type (lagoons, estuaries, open coast) or stratum (intertidal, subtidal). For some relationships, a maximum (e.g. temperature from 15–20°C; mud content of sediment around 40%) or bimodal curve (e.g. salinity) was found. In lagoons the densities were twice higher than in other locations, and at open coasts the diversity was much lower than in other locations. We conclude that latitudinal trends and regional differences in diversity and densities are strongly influenced by, i.e. merely the result of, particular sets and ranges of environmental factors and location characteristics specific to certain areas, such as the Baltic, with typical salinity clines (favouring insects) and the Mediterranean, with higher temperatures (favouring crustaceans). Therefore, eventual trends with latitude are primarily indirect and so can be overcome by local variation of environmental factors.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-05
    Description: The Water Framework Directive (WFD) and the Marine Strategy Framework Directive (MSFD) are the European umbrella regulations for water systems. It is a challenge for the scientific community to translate the principles of these directives into realistic and accurate approaches. The aim of this paper, conducted by the Benthos Ecology Working Group of ICES, is to describe how the principles have been translated, which were the challenges and best way forward. We have tackled the following principles: the ecosystem-based approach, the development of benthic indicators, the definition of ‘pristine’ or sustainable conditions, the detection of pressures and the development of monitoring programs. We concluded that testing and integrating the different approaches was facilitated during the WFD process, which led to further insights and improvements, which the MSFD can rely upon. Expert involvement in the entire implementation process proved to be of vital importance.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-09-30
    Description: Marine renewable energy projects (MREs) are supported by mandatory environmental monitoring programmes due to assumed environmental impacts. These programmes concentrate on the resultant effects of single industrial projects onto biological and physical components contributing to the local ecosystem structure. To date, impact assessments at the ecosystem functioning level (e.g. trophic interactions, nutrient cycling) are largely lacking. This critical knowledge gap hampers our ability to answering the “so what” question when assessing environmental impacts, i.e. whether the observed impacts are classified as good, bad or neutral, and/or acceptable or unacceptable. When assessing MREs, there is a fundamental need to focus on ecosystem functioning at relevant spatial and temporal scales to properly understand ecological impacts and its consequences. Here, we make a science-based plea for an increased investment in large scale impact assessment of MREs focused on ecosystem functioning. This presentation will cover a selection of examples from MRE monitoring programmes, where the current knowledge has limited conclusions on the “so what” question. Further, applications will demonstrate how a proposed ecosystem functioning approach at an appropriate spatial and temporal scale could advance our current assessment. These examples will illustrate the need to expand the current level of MRE monitoring beyond that of community structure and of individual industrial projects. This work will advance and strengthen collaborative MRE monitoring strategies, facilitating scientists, developers and regulators to answer the much needed “so what” question when undertaking environmental assessments, and reassuring stakeholders with high confidence over these assessments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-04-29
    Description: Marine renewable energy (MRE) projects are increasingly occupying the European North-Atlantic coasts and this is clearly observed in the North Sea. Given the expected impacts on the marine environment, each individual project is accompanied by a legally mandatory, environmental monitoring programme. These programmes are focused on the resultant effects on ecosystem component structure (e.g. species composition, numbers and densities) of single industrial projects. To date, there is a tendency to further narrow down to only a selection of ecosystem components (e.g. marine mammals and birds). While a wide knowledge-based understanding of structural impacts on (a selection of) ecosystem components exists, this evidence is largely lacking when undertaking impact assessments at the ecosystem functioning level (e.g. trophic interactions, dispersal and nutrient cycling). This critical knowledge gap compromises a scientifically-underpinned answer to the “so what” question of environmental impacts, i.e. whether the observed impacts are considered to be good or bad, or acceptable or unacceptable. The importance of ecosystem functioning is further acknowledged in the descriptors 4 and 6 of the Marine Strategy Framework Directive (EU MSFD) and is at the heart of a sustainable use and management of our marine resources. There hence is a fundamental need to focus on ecosystem functioning at the spatial scales at which marine ecosystems function when assessing MRE impacts. Here, we make a plea for an increased investment in a large (spatial) scale impact assessment of MRE projects focused on ecosystem functioning. This presentation will cover a selection of examples from North Sea MRE monitoring programmes, where the current knowledge has limited conclusions on the “so what” question. We will demonstrate how an ecosystem functioning-focused approach at an appropriate spatial scale could advance our current understanding, whilst assessing these issues. These examples will cover biogeochemical cycling, food webs and connectivity in a cumulative MRE impact assessment context. This presentation will highlight both the available knowledge base and further elaborate on the knowledge gaps. We will offer guidance on how these knowledge gaps could be further investigated, based on examples taken from the recently started projects FaCE-It, Functional biodiversity in a changing sedimentary environment: implications for biogeochemistry and food webs in a managerial setting (financed by the Belgian Science Policy) and UNDINE, Understanding the influence of man-made structures on the ecosystem functions of the North Sea (financed by Oil & Gas UK). This presentation will set the scene and offer further thinking on the current issues associated to MRE monitoring, particularly beyond the level of ecological structure and individual industrial projects. The overall message will aid advancing and strengthening a collaborative MRE monitoring, helping scientists, managers and regulators to answer the much needed “so what” question to support environmental assessments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-01-20
    Description: There is growing evidence that climate change could affectmarine benthic systems. This review provides information of climate change-related impacts on the marine benthos in the North Atlantic. We cover a number of related research aspects, mainly in connection to two key issues. First, is the relationship between different physical aspects of climate change and the marine benthos. This section covers: (a) the responses to changes in seawater temperature (biogeographic shifts and phenology); (b) altered Hydrodynamics; (c) ocean acidification (OA); and (d) sea-level rise-coastal squeeze. The second major issue addressed is the possible integrated impact of climate change on the benthos. This work is based on relationships between proxies for climate variability, notably the North Atlantic Oscillation (NAO) index, and the long-term marine benthos. The final section of our review provides a series of conclusions and future directions to support climate change research on marine benthic systems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-16
    Description: The workshop aimed at bringing experts working in the field of offshore wind farms – benthos together for the first time in order to get an overview on the state of the art. This was achieved by an extended poster session. The second issue of WKEOMB was to identify knowledge gaps and evaluating monitoring strategies. This issue was evaluated by disentangling the cause-effect relationships affected by the pressures of the activities during the construction and operation phase of offshore wind farms. All cause-effect relationships were summarized in a schematic presentation. The identifi-cation and a comprehensive overview of cause-effect relationships is a prerequisite for an efficient, hypothesis driven approach towards the disentanglement of the vari-ous effects of offshore wind farms on the marine benthos as well as on the whole eco-system. Further, manifold cause-effect relationships were prioritized based on three main research themes, biological resources – biogeochemical reactions – biodiversity, disentangled by the participants as relevant. An important outcome of the workshop is that benthos receives by far too little atten-tion compared to other ecosystem components (e.g. seabirds, marine mammals), al-though it contributes to a great extent to marine ecosystem services and goods, e.g. biodiversity, long-term carbon storage and trophic supply for higher trophic-level species. A second main outcome of WKEOMB was that legal baseline monitoring merely allows for net-effect descriptions but not for identifying and understanding the underlying processes. Key processes should be, thus, identified and become sub-ject to hypotheses-based target monitoring and/or experimental studies.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-09-29
    Description: Offshore windfarms are expected to affect substantially the structure and functioning of marine ecosystems. Collision risks for migrating birds and noise impact on marine mammals and fish are issues of major public concern. Less charismatic organisms, however, from marine algae through to benthic invertebrates and demersal fish receive far less attention. We contend that the benthos deserves much greater attention owing to the numerous ecosystem goods and services, such as marine biodiversity and long‐term carbon storage and natural resources (e.g. for fish, birds, mammals, and finally humans), that are intimately linked to the benthic system. The installation and operation of extensive offshore windfarms in shallow shelf seas will initiate processes which are expected to affect benthic communities over various spatial and temporal scales. Extensive baseline monitoring programmes allow observations of structural changes to benthic communities, but this is a post‐hoc approach. To gain a mechanistic understanding of these processes that enables us to explain the observed changes, specific target monitoring and well‐designed experimental studies are required. In this conceptual talk we will discuss specific cause–effect relationships in the marine benthos arising from the anthropogenic activities associated with offshore windfarms. The identification of cause–effect relationships is the prerequisite for an efficient, hypothesis‐driven approach towards the disentanglement of the various effects of offshore windfarms on the marine benthos as well as on the whole ecosystem.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-09-29
    Description: In many European countries offshore windfarm projects are accompanied by obligatory environmental impact assessments, including baseline monitoring of the marine benthos and demersal fish. The effects of offshore windfarm developments on the benthic system are complex. However, legal baseline monitoring merely allows for net effect descriptions but not for identifying and understanding the underlying processes. Instead, key processes should be identified and become subject to hypotheses‐based target monitoring and/or experimental studies in order to make environmental impact assessments more efficient and reduce duplication internationally. We compiled an overview over the anthropogenic activities associated with the construction and operation of offshore windfarms and identified cause–effect relationship to facilitate the development of specific hypotheses. We expect offshore windfarming activities to modify the geomorphological and hydrodynamic environment at different temporal and spatial scales. The environmental effects will have consequences for the behaviour and physiology of benthic organisms, including demersal fish, restructuring natural local populations and communities. Major effects on biological production, biogeochemical processes, as well as on structure and function related to biodiversity, are expected from the massive colonization of the artificial underwater constructions by a specific hard‐bottom fauna which is naturally missing in soft sedimentary habitats. Understanding the mechanisms behind these changes is a priority for assessing and predicting the ecological implications for the benthic system. Such predictions may help to develop science‐based mitigation actions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...