GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
Years
  • 1
    Publication Date: 2021-05-12
    Description: On natural faults that host repeating slip events, the inter‐event loading time is quite large compared to the slip event duration. Since most friction studies focus on steady‐state frictional behavior, the fault loading phase is not typically examined. Here, we employ a method specifically designed to evaluate fault strength evolution during active loading, under shear driving rates as low as 10−10 m/s, on natural fault gouge samples from the Waikukupa Thrust in southern New Zealand. These tests reveal that in the early stages of loading following a slip event, there is a period of increased stability, which fades with accumulated slip. In the framework of rate‐ and state‐dependent friction laws, this temporary stable phase exists as long as slip is less than the critical slip distance and the elapsed time is less than the value of the state variable at steady state. These observations indicate a minimum earthquake recurrence time, which depends on the field value of the critical slip distance and the background slip rate. We compare estimates of minimum earthquake recurrence times with the recurrence times of repeating large earthquakes on the Alpine Fault in southern New Zealand and repeating small‐magnitude earthquakes on the San Andreas Fault system in California. We find that the observed recurrence times are mostly longer than the predicted minimum values, and exceptions in the San Andreas system may be explained by elevated slip rates due to larger earthquakes in this region.
    Description: Deutsche Forschungsgemeinschaft via MARUM Research Centre/Cluster of Excellence (grants FZT15, EXC309, and IK 107/3‐1) and from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement 714430) to M. I.
    Description: Published
    Description: e2020JB020015
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Friction ; Fault ; Earthquake physics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-21
    Description: Slow slip events (SSEs) are recognized as an important component of plate boundary fault slip, and there is a need for laboratory friction data on natural samples to guide comparisons with natural SSEs. Here, we compile a comprehensive catalog of SSEs observed geodetically at the Hikurangi subduction zone offshore northern New Zealand, and compare it with results of laboratory friction experiments that produce laboratory SSEs under plate tectonic driving rates (5 cm/yr). We use samples from Ocean Drilling Program Site 1124 seaward of the Hikurangi subduction zone to represent the plate boundary that hosts shallow SSEs at Hikurangi. We find that laboratory SSEs exhibit a similar displacement record and range of stress drops as the natural SSEs. Results of velocity step tests, which can be used to evaluate frictional instability based on the critical stiffness criterion, indicate that the slow slip activity at Hikurangi is a form of stably-accelerating slip. Our laboratory SSEs provide an alternative method of quantifying (in)stability by direct measurement of the unloading stiffness during the stress drop. The observed dependence of laboratory SSE parameters on effective normal stress is consistent with critical stiffness theory; however, depth-increasing projections based on laboratory data do not match observations from natural SSEs. These differences are likely related to changing temperature and fault rock composition downdip but also complications related to scaling and/or limited sampling. Scientific drilling recently undertaken at the Hikurangi subduction zone should serve to improve and guide future studies of the role of frictional properties for the occurrence of SSEs.
    Keywords: 551.8 ; Hikurangi ; slow slip ; subduction zone ; friction ; GPS ; fault
    Language: English
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Slow slip events (SSEs) accommodate a significant proportion of tectonic plate motion at subduction zones, yet little is known about the faults that actually host them. The shallow depth (〈2 km) of well-documented SSEs at the Hikurangi subduction zone offshore New Zealand offers a unique opportunity to link geophysical imaging of the subduction zone with direct access to incoming material that represents the megathrust fault rocks hosting slow slip. Two recent International Ocean Discovery Program Expeditions sampled this incoming material before it is entrained immediately down-dip along the shallow plate interface. Drilling results, tied to regional seismic reflection images, reveal heterogeneous lithologies with highly variable physical properties entering the SSE source region. These observations suggest that SSEs and associated slow earthquake phenomena are promoted by lithological, mechanical, and frictional heterogeneity within the fault zone, enhanced by geometric complexity associated with subduction of rough crust.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-01-01
    Description: A fundamental problem in fault mechanics is whether slip instability associated with earthquake nucleation depends on absolute fault strength. We present laboratory experimental evidence for a systematic relationship between frictional strength and friction rate dependence, one of the key parameters controlling stability, for a wide range of constituent minerals relevant to natural faults. All of the frictionally weak gouges (coefficient of sliding friction, {micro} 〈 0.5) are composed of phyllosilicate minerals and exhibit increased friction with slip velocity, known as velocity-strengthening behavior, which suppresses frictional instability. In contrast, fault gouges with higher frictional strength exhibit both velocity-weakening and velocity-strengthening frictional behavior. These materials are dominantly quartzofeldspathic in composition, but in some cases include certain phyllosilicate-rich gouges with high friction coefficients. We also find that frictional velocity dependence evolves systematically with shear strain, such that a critical shear strain is required to allow slip instability. As applied to tectonic faults, our results suggest that seismic behavior and the mode of fault slip may evolve predictably as a function of accumulated offset.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kuhlmann, Jannis; Huhn, Katrin; Ikari, Matt J (2016): Do embedded volcanoclastic layers serve as potential glide planes? - An integrated analysis from the Gela Basin offshore southern Sicily. In: Lamarche et al. (eds.) Submarine Mass Movements and Their Consequences. Springer, Heidelberg, 41, 273-280, https://doi.org/10.1007/978-3-319-20979-1_27
    Publication Date: 2023-03-03
    Description: To gain information on the role of marine tephra Y-7 in the framework of slope stability and failure initiation, high resolution data on radiodensity and mesoporosity was extracted from a 20 cm CT scan of whole-round section GeoB14403 5P-2. Additionally, three drained direct-shear experiments were performed on samples of this section representing the sedimentary transition from overlying homogeneous background sedimentation of silty clay to the volcanoclastic layer.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-03-01
    Description: We conducted laboratory friction experiments measuring time-dependent frictional strengthening (healing) on fault zone and wall rock samples recovered during drilling at the San Andreas Fault Observatory at Depth (SAFOD), located near the southern edge of the creeping section and in the direct vicinity of three repeating microearthquake clusters. Samples are from two actively creeping fault strands, termed the Central Deforming Zone (CDZ) and the Southwest Deforming Zone (SDZ). For all samples, mineralogic composition was quantified by X-Ray Diffraction (XRD), including clay mineral species. For shearing tests, all samples were crushed and sieved to a grain size 〈 125 µm. Samples were mixed with distilled water and sheared in a modified Wykeham-Farrance Bromhead ring shear apparatus, under a constant normal load of 1 MPa and controlled temperature of 20 °C. We conducted slide-hold-slide tests, during which the driving velocity is held at zero for a prescribed amount of time (t) before shearing is resumed at 10 µm/s. The hold time is increased in half-order of magnitudes (approximately 3-fold) in the range of 10 to ~350,000 seconds, with at least 1 mm of shearing in between holds.
    Keywords: earthquake; fault healing; friction; SAFOD; San Andreas Fault
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ikari, Matt J; Hüpers, Andre; Kopf, Achim J (2013): Shear strength of sediments approaching subduction in the Nankai Trough, Japan as constraints on forearc mechanics. Geochemistry, Geophysics, Geosystems, 14(8), 2716-2730, https://doi.org/10.1002/ggge.20156
    Publication Date: 2023-05-12
    Description: The mechanical behavior of the plate boundary fault zone is of paramount importance in subduction zones, because it controls megathrust earthquake nucleation and propagation as well as the structural style of the forearc. In the Nankai area along the NanTroSEIZE (Kumano) drilling transect offshore SW Japan, a heterogeneous sedimentary sequence overlying the oceanic crust enters the subduction zone. In order to predict how variations in lithology, and thus mechanical properties, affect the formation and evolution of the plate boundary fault, we conducted laboratory tests measuring the shear strengths of sediments approaching the trench covering each major lithological sedimentary unit. We observe that shear strength increases nonlinearly with depth, such that the (apparent) coefficient of friction decreases. In combination with a critical taper analysis, the results imply that the plate boundary position is located on the main frontal thrust. Further landward, the plate boundary is expected to step down into progressively lower stratigraphic units, assisted by moderately elevated pore pressures. As seismogenic depths are approached, the décollement may further step down to lower volcaniclastic or pelagic strata but this requires specific overpressure conditions. High-taper angle and elevated strengths in the toe region may be local features restricted to the Kumano transect.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ikari, Matt J; Ito, Yoshihiro; Ujiie, Kohtaro; Kopf, Achim J (2015): Spectrum of slip behaviour in Tohoku fault zone samples at plate tectonic slip rates. Nature Geoscience, 8(11), 870-874, https://doi.org/10.1038/ngeo2547
    Publication Date: 2023-05-12
    Description: During the 2011 Tohoku-oki earthquake, extremely extensive coseismic slip ruptured shallow parts of the Japan Trench subduction zone and breached the sea floor^1, 2. This part of the subduction zone also hosts slow slip events (SSE)^3, 4. The fault thus seems to have a propensity for slip instability or quasi-instability that is unexpected on the shallow portions of important fault zones. Here we use laboratory experiments to slowly shear samples of rock recovered from the Tohoku-oki earthquake fault zone as part of the Japan Trench Fast Drilling Project. We find that infrequent perturbations in rock strength appear spontaneously as long-term SSE when the samples are sheared at a constant rate of about 8.5 cm yr^-1, equivalent to the plate-convergence rate. The shear strength of the rock drops by 3 to 6%, or 50 kPa to 120 kPa, over about 2 to 4 h. Slip during these events reaches peak velocities of up to 25 cm yr^-1, similar to SSE observed in several circum-Pacific subduction zones. Furthermore, the sheared samples exhibit the full spectrum of fault-slip behaviours, from fast unstable slip to slow steady creep, which can explain the wide range of slip styles observed in the Japan Trench. We suggest that the occurrence of SSE at shallow depths may help identify fault segments that are frictionally unstable and susceptible to large coseismic slip propagation.
    Keywords: Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-01-13
    Description: Here, we employ a method specifically designed to evaluate fault strength evolution during active loading on natural fault gouge samples from the Waikukupa Thrust in southern New Zealand. We develop a hybrid between slide-hold-slide and velocity-step tests by employing a small (as low as 10-10 m/s) shear driving rate rather than zero driving rate during the "hold" portion of the tests, which we term a "velocity-cycling" (VC) test. We then compare the results of VC tests with results from standard slide-hold-slide and velocity step tests, and evaluate their combined implications for fault slip behavior in general.
    Keywords: Alpine Fault; fault; friction; healing; recurrence time; Waikukupa
    Type: Dataset
    Format: application/zip, 6 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-01-13
    Description: We performed laboratory friction experiments on simulated fault gouges, measuring both the velocity- and slip-dependence of friction in velocity-step tests. Here, we evaluate the relative importance of slip- and velocity-dependent friction in laboratory velocity-stepping experiments, and assess the impact of friction slip dependence on natural faults.As an analogue fault gouge, we used a mixture of silt-sized quartz and commercially obtained clay-rich sediment (Grüne Tonerde, Argiletz Laboratories) mixed with deionized water. All tests were conducted at an (effective) normal stress of 2 MPa, with total shear displacements of up to ~16 mm.
    Keywords: fault; friction; JSPS KAKENHI; KAKENHI; weakening
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...