GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 69 (1998), S. 4146-4151 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The use of the GiZero free-fall facility for testing the weak equivalence principle is discussed in this article. GiZero consists of a vacuum capsule, released from a balloon at an altitude of 40 km, which shields an experimental apparatus free falling inside the capsule itself. The expected residual acceleration external to the detector is 10−12 g (with g the Earth's gravitational acceleration) for the 30 s free fall. A common-mode rejection factor of about 10−4 reduces the residual noise differential output to only 10−16 g. The gravity detector is a differential accelerometer with two test masses with coincident center of masses (i.e., zero baseline) with capacitive pick ups. Preparatory experiments have been conducted in the laboratory with a precursor detector by measuring controlled gravity signals, at low frequency, and by observing the Luni-Solar tides. The estimated accuracy in testing the weak equivalence principle, with a 95% confidence level, is 5×10−15 in a 30 s free fall. When compared to orbital free-fall experiments, the GiZero experiment can be considered as a valid compromise which is able to satisfy the requirement for improving significantly the experimental accuracy in testing the equivalence principle with a substantial lower cost, the ability to recover the detector and to repeat the experiment at relatively short time intervals. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics Letters A 160 (1991), S. 45-54 
    ISSN: 0375-9601
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Advances in Space Research 14 (1994), S. 113-118 
    ISSN: 0273-1177
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-05-29
    Description: GEOSTAR is the prototype of the first European long-term, multidisciplinary deep sea observatory for continuous monitoring of geophysical, geochemical and oceanographic parameters. Geostar is the example of a strong synergy between science and tecnology addressed to the development of new technological solutions for the observatory realisation and management. The GEOSTAR system is described outlining the enhancements introduced during five years of project activity. An example of data retrieved from the observatory being the deep sea mission running is also given.
    Description: Published
    Description: 111-120
    Description: 2.5. Laboratorio per lo sviluppo di sistemi di rilevamento sottomarini
    Description: reserved
    Keywords: Ocean Bottom Seismometer ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-05-29
    Description: Exploration of ocean seafloor is of paramount importance for a better understanding of the geodynamic evolution of our Planet. The pilot experiment of ORION-GEOSTAR 3 EC project was the first long-term continuous geophysical and oceanographic experiment of an important seafloor area of Southern Tyrrhenian Sea, the Marsili abyssal plain. The latter hosts the Marsili Seamount which is Europe’s one of the largest underwater volcano of Plio-Pleistocenic age. In spite of its dimensions, it is rather unknown about the present characteristics and activity. For this reason, we deployed a deep-sea observatory network, composed by two bottom observatories, on the seafloor at the base of the seamount at 3320 m b.s.l., in the period December 2003-May 2005. Some of the instruments on board the observatory were: broad-band seismometers, hydrophones, gravity meter, two magnetometers (scalar and vectorial), 3D single-point current meter, ADCP, CTD, automatic pH analyser and off-line water sampler for laboratory analyses. The first successful scientific objective was to obtain long-term continuous recordings under a unique time reference. The data analysis shows that they are generally of good quality and really continuous (only a few gaps). As a first step we performed a classification of seismic waveforms, a first inversion of magnetic variational data, and a first analysis of gravity meter, chemical and oceanographic data. Analysis of individual time series has shown interesting results, i.e. depth of the magnetic Moho under the Marsili, attenuation of recorded seismic body waves and clues of hydrothermal circulation. We show examples of the preliminary data analysis together with first results and comparisons among data coming from different sensors.
    Description: Published
    Description: Cambridge, UK, February 24-26, 2009
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: 3.8. Geofisica per l'ambiente
    Description: open
    Keywords: Marsili Basin and Volcanic Seamount ; Exploration with seafloor observatories ; ORION-GEOSTAR 3 EC project ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-05-29
    Description: La caldera risorgente dei Campi Flegrei è, insieme ai vulcani Somma-Vesuvio, Ischia e Procida, uno degli elementi dominanti dell’assetto geologico e morfologico dell’area napoletana. Si tratta di un sistema vulcanico ancora attivo la cui persistente attività è testimoniata dall’ultima eruzione, avvenuta nel 1538, dall’intensa attività fumarolica e idrotermale che perdura da millenni e dai frequenti eventi bradisismici, con deformazione del suolo accompagnata da sismicità e variazioni delle caratteristiche chimico-fisiche dei fluidi emessi dalle fumarole. La caldera comprende la parte occidentale della città di Napoli e si estende nel Golfo di Pozzuoli. La caratteristica principale dell’attuale attività vulcanica della caldera è il movimento lento del suolo a carattere episodico e di grande ampiezza (bradisismo), accompagnato da un’intensa e superficiale attività sismica che si verifica in generale durante la fase di sollevamento......
    Description: Istituto Nazionale di Geofisica e Vulcanologia - Marina Militare Italiana
    Description: Published
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: open
    Keywords: Pozzuoli, bradisismo, prospezione geofisica, idrografia, oceanografia fisica ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-05-29
    Description: A new concept gravity meter with sensitivity close to Hz ms / 10 2 8 − − in the range of 10 -5 −1Hz intended for observation of the vertical component of the Earth gravity and teleseismic waves was implemented at the Istituto di Fisica dello Spazio Interplanetario (IFSI), CNR and successfully operated during the GEOSTAR-2 mission. The gravimeter has demonstrated a capability to operate for long time in an autonomous regime and a good reliability for operation in extreme environments; at the same time the experimental measurements gave the information for the further gravimeter’s implementation. Results of observation and data analysis included the registration of seismic waves excited by global earthquakes and the evaluation of the low frequency modes of free oscillations of the Earth are reported.
    Description: JCR Journal
    Description: open
    Keywords: seafloor gravimeter ; teleseismic waves ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 526596 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-05-29
    Description: Important processes that affect the Earth, for example climate change and geohazards, are driven by phenomena that take place in the oceans. To better understand and mitigate the effects of these processes, an important international effort is taking place to deploy permanent and remotely controlled seafloor and water-column observatory systems. In Europe, large cabled systems with marine sensors are being developed for near real-time and real-time long-term monitoring of ocean processes. Many of these system are part of the EMSO (European Multidisciplinary Seafloor and water column Observatory www.emso-eu.org) Research Infrastructure. A multidisciplinary approach based on different types of sensors, is necessary to understand complex natural phenomena. In fact, given a signal of interest, by using several sensors recording simultaneously it is possible to identify the contribution of different sources to this signal. On the other hand, obtaining good quality long-term continuous data from a variety of sensors installed on a seafloor observatory can be a challenging technical task. We consider long-term time series acquired by GEOSTAR class seafloor observatories deployed at two European offshore sites (Western Ionian sea in the Mediterranean and Iberian Margin-Gulf of Cadiz in the Atlantic Ocean), where there are important sources of geohazard. The observatories are either standalone or cabled, each with its particular technological difficulties and features. The quality and reliability of a signal depends on a chain of events defined by the following aspects: the sensor itself, the installation procedure of the sensor, the possible interaction of the sensor with nearby electronics or with other sensors (e.g. active acoustic current meters signal is recorded from hydrophones), the time stamping procedure, the architecture of data acquisition and transmission (or storage in the standalone case) system, and finally data processing to improve signal to noise ratio. The definition of what is signal and what is noise depends on the study of interest. For example, a seismologist interested in the signals that are caused by earthquakes considers environmental and anthropic effects as noise which would be gladly removed. On the other hand, if one is trying to study the seasonal variations of the seismic signal, then this contribution becomes the signal of interest. To correlate time series coming from different sites, campaigns or instruments, absolute calibration of sensors is obviously a critical issue. A rigorous estimate of timestamp precision is needed to achieve reliable results from multidisciplinary studies. In the present work we focus on the quality of the signal recorded by a broadband seafloor seismometer (from 0.003 Hz to 50 Hz), by a prototype gravimeter and on signals recorded by auxiliary sensors that are helpful in discriminating different noise sources. We first illustrate the steps that were taken to obtain a good quality reliable signal and finally we focus on how, thanks to a multisensor approach, we can identify the main noise sources, such as sea currents and temperature variation in the long period part of the spectrum. It is possible, in principle, to reduce this noise through signal processing techniques. The improvement of the S/N with such procedures allows for a more efficient detection of interesting seismic signals. We show some examples of this signal improvement procedure.
    Description: Published
    Description: Genova
    Description: 3A. Ambiente Marino
    Description: restricted
    Keywords: EMSO ; Multiparametric Seafloor Observatory ; Seismic signals ; broad band sismometer ; gravimeter ; correlation ; 03. Hydrosphere::03.01. General::03.01.08. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-05-29
    Description: Gravity time sequences collected at Etna volcano by continuously recording spring-based relative gravimeters showed significant variations in temporal correspondence with paroxysmal eruptions. Since the observed gravity variations can only be partially related to subsurface mass redistribution phenomena, we investigated on the instrumental effects due to the ground vibrations as those accompanying explosive activity. We simulated the performances of relative gravimeters through laboratory experiments to estimate their response to vertical and horizontal excitations. Laboratory tests were carried out using a vibrating platform capable of accelerating the instruments with intensities and frequencies, in both the vertical and horizontal directions, observed in the ground vibrations associated with paroxysmal events. The seismic signals recorded at Etna volcano during the 10 April 2011 lava fountain were analyzed to retrieve the parameters used to drive the vibration platform. We tested two gravimeters used for Etna volcano monitoring: the LaCoste & Romberg D#185 and the Scintrex CG-3M#9310234. The experimental results highlight that vibrations, resembling the seismic waves propagated during paroxysmal events, cause an amplitude response in the gravity readings of the order of several hundred of microGals. Generally the relationship between the vibrations and the gravimeter response is non-linear with a fairly complex dependence on the frequencies and amplitude of the signals acting on the gravimeters.
    Description: Published
    Description: 44
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: open
    Keywords: Spring-based relative gravimeter ; Vibrating platform ; Volcano monitoring ; Explosive eruptions ; Gravity changes ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-09-08
    Description: The European project “Wind, Ports, and Sea”, funded by the European Cross-border Programme “Italy–France Maritime 2007-2013”, aims to improve the safety conditions and to reduce the hazards by monitoring and forecasting the sea-state outside the main ports of the Northern Tyrrhenian and Ligurian Seas. The sea state forecast is done by using a numeric model specifically developed, while the used data are obtained by means of a monitoring system of stations installed in the coast of La Spezia harbor so to perform an inland remote monitoring. This remote monitoring system of the sea, called OSIS ® (Ocean Seismic - Integrated Solution), is a pilot project and will be presented in its main features. The main advantage of the OS-IS® is that it is installed inland and there are no parts in the sea. The key elements of the system are a high sensitivity accelerometers and apposite algorithms for the evaluation of the sea state using the micro-seismic signals on the basis of the mathematical models and the appropriate calibration factors. Actually, since the beginning of the 1900, is well known that the sea waves are sources of a microseismic noise and this phenomenon has been described with more and more precise models since the 1950 by Longuet-Higgins. The OS-IS® system used for "Wind, Ports and Sea" project is made of three micro-seismic stations installed near the La Spezia gulf: each accelerometric station is equipped with a weather station and a data logger that automatically transfers the data to a central server which runs the algorithm of the OS-IS®. In the following will be shortly described the installed systems focusing on its reliability and in the comparison with the traditional monitoring system using buoy. Finally the first measurements will be shown in comparison with those of the conventional method based on the buoys.
    Description: Autorità Portuale della Spezia, Programma di cooperazione transfrontaliera Italia-Francia “Marittimo” 2007-2013
    Description: Published
    Description: 691-698
    Description: 3A. Ambiente Marino
    Description: N/A or not JCR
    Description: restricted
    Keywords: OS-IS®, moto ondoso, Vento, Porti e Mare, ; 03. Hydrosphere::03.02. Hydrology::03.02.05. Models and Forecasts
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...