GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2018-06-26
    Description: The movement of magma through the shallow crust and the impact of subsurface sill complexes on the hydrocarbon systems of prospective sedimentary basins has long been an area of interest and debate. Based on 3D seismic reflection and well data, we present a regional analysis of the emplacement and magmatic plumbing system of the Palaeogene Faroe‐Shetland Sill Complex (FSSC), which is intruded into the Mesozoic and Cenozoic sequences of the Faroe‐Shetland Basin (FSB). Identification of magma flow directions through detailed seismic interpretation of approximately 100 sills indicates that the main magma input zones into the FSB were controlled primarily by the NE–SW basin structure that compartmentalise the FSB into its constituent sub‐basins. An analysis of well data shows that potentially up to 88% of sills in the FSSC are 〈40 m in thickness, and thus below the vertical resolution limit of seismic data at depths at which most sills occur. This resolution limitation suggests that caution needs to be exercised when interpreting magmatic systems from seismic data alone, as a large amount of intrusive material could potentially be missed. The interaction of the FSSC with the petroleum systems of the FSB is not well understood. Given the close association between the FSSC and potential petroleum migration routes into some of the oil/gas fields (e.g. Tormore), the role the intrusions may have played in compartmentalisation of basin fill needs to be taken fully into account to further unlock the future petroleum potential of the FSB.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-05-01
    Description: The Gulf of Alaska is one of the largest accretionary complexes on Earth. In this study, we examined the earliest phase of accretion in the Mesozoic McHugh Complex and Valdez Groups, exposed in SE Alaska. The oldest preserved fragment, the Mesomélange assemblage, is Jurassic (ca. 160–140 Ma) and consists of an ∼3-km-thick structural package of strongly deformed shaley materials with slices of oceanic cherts and basalts. Heavy minerals indicate dominant erosion from a magmatic arc source uplifted after the collision of the Wrangellia and the Talkeetna oceanic arc. A tectonic erosion event affected the forearc just prior to ca. 120 Ma and was likely caused by seamount collision, ridge subduction, or both. This was followed at 105 Ma by mass wasting of sandstone and conglomerates, preserved as the Graywacke-Conglomerate assemblage (ca. 105–83 Ma). Heavy minerals indicate continued flux from arc sources, but with significant changes suggesting a larger, more diverse catchment area. Erosion of deeper crustal sources provided high-Mg diopside and garnets to the trench. Faster sediment flux was caused by rock uplift triggered by final accretion of the Wrangellia-Peninsula terrane to North America. The start of large-scale accretion in Alaska roughly coincided with the initiation of Shimanto Complex accretion in Japan and can be understood as primarily linked to sediment supply driven by plate-margin tectonics rather than climatically induced erosion onshore.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: The breakup of Laurasia to form the Northeast Atlantic Realm disintegrated an inhomogeneous collage of cratons sutured by cross-cutting orogens. Volcanic rifted margins formed that are underlain by magma-inflated, extended continental crust. North of the Greenland-Iceland-Faroe Ridge a new rift–the Aegir Ridge–propagated south along the Caledonian suture. South of the Greenland-Iceland-Faroe Ridge the proto-Reykjanes Ridge propagated north through the North Atlantic Craton along an axis displaced ~150 km to the west of the rift to the north. Both propagators stalled where the confluence of the Nagssugtoqidian and Caledonian orogens formed an ~300-km-wide transverse barrier. Thereafter, the ~150 × 300-km block of continental crust between the rift tips–the Iceland Microcontinent–extended in a distributed, unstable manner along multiple axes of extension. These axes repeatedly migrated or jumped laterally with shearing occurring between them in diffuse transfer zones. This style of deformation continues to the present day in Iceland. It is the surface expression of underlying magma-assisted stretching of ductile continental crust that has flowed from the Iceland Microplate and flanking continental areas to form the lower crust of the Greenland-Iceland-Faroe Ridge. Icelandic-type crust which underlies the Greenland-Iceland-Faroe Ridge is thus not anomalously thick oceanic crust as is often assumed. Upper Icelandic-type crust comprises magma flows and dykes. Lower Icelandic-type crust comprises magma-inflated continental mid- and lower crust. Contemporary magma production in Iceland, equivalent to oceanic layers 2–3, corresponds to Icelandic-type upper crust plus intrusions in the lower crust, and has a total thickness of only 10–15 km. This is much less than the total maximum thickness of 42 km for Icelandic-type crust measured seismically in Iceland. The feasibility of the structure we propose is confirmed by numerical modeling that shows extension of the continental crust can continue for many tens of millions of years by lower-crustal ductile flow. A composition of Icelandic-type lower crust that is largely continental can account for multiple seismic observations along with gravity, bathymetric, topographic, petrological and geochemical data that are inconsistent with a gabbroic composition for Icelandic-type lower crust. It also offers a solution to difficulties in numerical models for melt-production by downward-revising the amount of melt needed. Unstable tectonics on the Greenland-Iceland-Faroe Ridge can account for long-term tectonic disequilibrium on the adjacent rifted margins, the southerly migrating rift propagators that build diachronous chevron ridges of thick crust about the Reykjanes Ridge, and the tectonic decoupling of the oceans to the north and south. A model of complex, discontinuous continental breakup influenced by crustal inhomogeneity that distributes continental material in growing oceans fits other regions including the Davis Strait, the South Atlantic and the West Indian Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...