GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Language
  • 1
    Publication Date: 2022-08-22
    Description: The increased fraction of first year ice (FYI) at the expense of old ice (second-year ice (SYI) and multi-year ice (MYI)) likely affects the permeability of the Arctic ice cover. This in turn influences the pathways of gases circulating therein and the exchange at interfaces with the atmosphere and ocean. We present sea ice temperature and salinity time series from different ice types relevant to temporal development of sea ice permeability and brine drainage efficiency from freeze-up in October to the onset of spring warming in May. Our study is based on a dataset collected during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Expedition in 2019 and 2020. These physical properties were used to derive sea ice permeability and Rayleigh numbers. The main sites included FYI and SYI. The latter was composed of an upper layer of residual ice that had desalinated but survived the previous summer melt and became SYI. Below this ice a layer of new first-year ice formed. As the layer of new first-year ice has no direct contact with the atmosphere, we call it insulated first-year ice (IFYI). The residual/SYI-layer also contained refrozen melt ponds in some areas. During the freezing season, the residual/SYI-layer was consistently impermeable, acting as barrier for gas exchange between the atmosphere and ocean. While both FYI and SYI temperatures responded similarly to atmospheric warming events, SYI was more resilient to brine volume fraction changes because of its low salinity (〈 2). Furthermore, later bottom ice growth during spring warming was observed for SYI in comparison to FYI. The projected increase in the fraction of more permeable FYI in autumn and spring in the coming decades may favor gas exchange at the atmosphere-ice interface when sea ice acts as a source relative to the atmosphere. While the areal extent of old ice is decreasing, so is its thickness at the onset of freeze-up. Our study sets the foundation for studies on gas dynamics within the ice column and the gas exchange at both ice interfaces, i.e. with the atmosphere and the ocean.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Hydrothermal vents modify and displace subsurface dissolved organic matter (DOM) into the ocean. Once in the ocean, this DOM is transported together with elements, particles, dissolved gases and biomass along with the neutrally buoyant plume layer. Considering the number and extent of actively venting hydrothermal sites in the oceans, their contribution to the oceanic DOM pool may be substantial. Here, we investigate the dynamics of DOM in relation to hydrothermal venting and related processes at the as yet unexplored Aurora hydrothermal vent field within the ultraslow-spreading Gakkel Ridge in the Arctic Ocean at 82.9∘ N. We examined the vertical distribution of DOM composition from sea ice to deep waters at six hydrocast stations distal to the active vent and its neutrally buoyant plume layer. In comparison to background seawater, we found that the DOM in waters directly affected by the hydrothermal plume was molecularly less diverse and 5 %–10 % lower in number of molecular formulas associated with the molecular categories related to lipid and protein-like compounds. On the other hand, samples that were not directly affected by the plume were chemically more diverse and had a higher percentage of chemical formulas associated with the carbohydrate-like category. Our results suggest that hydrothermal processes at Aurora may influence the DOM distribution in the bathypelagic ocean by spreading more thermally and/or chemically induced compositions, while DOM compositions in epipelagic and mesopelagic layers are mainly governed by the microbial carbon pump dynamics and surface-ocean–sea-ice interactions.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-07-10
    Description: The Arctic Ocean is subject to large and rapid changes in sea ice cover, ocean freshwater and heat, and stratification and changes in the outflow of Arctic freshwater and sea ice has implications for watermass transformation downstream. Here, we review changes in ocean and sea ice conditions obtained within the Fram Strait Arctic Outflow Observatory, a long-term observing system in the East Greenland Current (EGC) in Fram Strait since 1990. We show that the freshwater transport was low from 2015 until 2019, due to a westward shift of the Polar/Atlantic front, thinning of the Polar Water layer and a weakening of the EGC. The sea-ice volume transport was record low in 2018 associated with record-thin ice caused by an anomalous sea level pressure pattern in the Atlantic sector of the Arctic. The 30-year long time series of ice thickness by Upward Looking Sonar show that a regime shift occurred in 2007, when the sea ice changed from thicker and deformed ice to a thinner and more uniform ice cover. Estimates based on new data from the east Greenland shelf show up to 40% of the total freshwater transport may occur here. A watermass analysis demonstrates that the cold halocline on the northwestern shelf is of Arctic riverine origin and tracer data give insight in variability in Pacific water, meteoric water and sea-ice meltwater. Finally, measurements in late summer over the last decade show a clear increase in ocean acidification of the outflowing Arctic waters in the western Fram Strait.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-08-02
    Description: Local evaporation in the Arctic is likely to increase with sea-ice retreat in the context of climate change. In parallel, the transport of moisture from the North Atlantic may also increase, especially in cases of weak polar vortex, associated to blocking over the Norwegian Sea and fast vapor transport into the Arctic. In order to evaluate the contribution of different sources to the moisture budget in the Arctic, a tool is needed to track the transport of vapor in the region. Here, we combine in-situ measurements of vapor isotope composition to analysis of back- trajectories, to reconstruct the pathway of vapor transport in different synoptic situations during two cruises North of Svalbard in 2018 and 2019. During the hot summer of 2018 in Europe, high dD values are observed in the Arctic. These high values could result from intense evaporation during the heat wave followed by quick transport into the Arctic. Indeed, back-trajectories indicate northern Europe as a dominant contributor to the moisture sampled during this period. During summer 2019, we observe wide oscillations of dD values depending on the moisture origin. An atmospheric river is sampled on the 29th of August 2019, that shows that Atlantic (southerly) air is characterized by high humidity and high dD values, opposite to Arctic (northerly) air. The secondary parameter d-excess varies in opposition to dD. This study highlights the potential of isotopes for identifying moisture sources around the Arctic.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-01-30
    Description: We present sea ice temperature and salinity data from first-year ice (FYI) and second-year ice (SYI) relevant to the temporal development of sea ice permeability and brine drainage efficiency from the early growth phase in October 2019 to the onset of spring warming in May 2020. Our dataset was collected in the central Arctic Ocean during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Expedition in 2019 to 2020. MOSAiC was an international transpolar drift expedition in which the German icebreaker RV Polarstern anchored into an ice floe to gain new insights into Arctic climate over a full annual cycle. In October 2019, RV Polarstern moored to an ice floe in the Siberian sector of the Arctic at 85 degrees north and 137 degrees east to begin the drift towards the North Pole and the Fram Strait via the Transpolar Drift Stream. The data presented here were collected during the first three legs of the expedition, so all the coring activities took place on the same floe. The end dates of legs 1, 2, and 3 were 13 December, 24 February, and 4 June, respectively. The dataset contributed to a baseline study entitled, Deciphering the properties of different Arctic ice types during the growth phase of the MOSAiC floes: Implications for future studies. The study highlights downward directed gas pathways in FYI and SYI by inferring sea ice permeability and potential brine release from several time series of temperature and salinity measurements. The physical properties presented in this paper lay the foundation for subsequent analyses on actual gas contents measured in the ice cores, as well as air-ice and ice-ocean gas fluxes. Sea ice cores were collected with a Kovacs Mark II 9 cm diameter corer. To measure ice temperatures, about 4.5 cm deep holes were drilled into the core (intervals varied by site and leg) . The temperatures were measured by a digital thermometer within minutes after the cores were retrieved. The ice cores were placed into pre-labelled plastic sleeves sealed at the bottom end. The ice cores were transported to RV Polarstern and stored in a -20 degrees Celsius freezer. Each of the cores was sub-sampled, melted at room temperature, and processed for salinity within one or two days. The practical salinity was estimated by measuring the electrical conductivity and temperature of the melted samples using a WTW Cond 3151 salinometer equipped with a Tetra-Con 325 four-electrode conductivity cell. The practical salinity represents the the salinity estimated from the electrical conductivity of the solution. The dataset also contains derived variables, including sea ice density, brine volume fraction, and the Rayleigh number.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-01-30
    Description: We present sea ice temperature and salinity data from first-year ice (FYI) and second-year ice (SYI) relevant to the temporal development of sea ice permeability and brine drainage efficiency from the early growth phase in October 2019 to the onset of spring warming in May 2020. Our dataset was collected in the central Arctic Ocean during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Expedition in 2019 to 2020. MOSAiC was an international transpolar drift expedition in which the German icebreaker RV Polarstern anchored into an ice floe to gain new insights into Arctic climate over a full annual cycle. In October 2019, RV Polarstern moored to an ice floe in the Siberian sector of the Arctic at 85 degrees north and 137 degrees east to begin the drift towards the North Pole and the Fram Strait via the Transpolar Drift Stream. The data presented here were collected during the first three legs of the expedition, so all the coring activities took place on the same floe. The end dates of legs 1, 2, and 3 were 13 December, 24 February, and 4 June, respectively. The dataset contributed to a baseline study entitled, Deciphering the properties of different Arctic ice types during the growth phase of the MOSAiC floes: Implications for future studies. The study highlights downward directed gas pathways in FYI and SYI by inferring sea ice permeability and potential brine release from several time series of temperature and salinity measurements. The physical properties presented in this paper lay the foundation for subsequent analyses on actual gas contents measured in the ice cores, as well as air-ice and ice-ocean gas fluxes. Sea ice cores were collected with a Kovacs Mark II 9 cm diameter corer. To measure ice temperatures, about 4.5 cm deep holes were drilled into the core (intervals varied by site and leg) . The temperatures were measured by a digital thermometer within minutes after the cores were retrieved. The ice cores were placed into pre-labelled plastic sleeves sealed at the bottom end. The ice cores were transported to RV Polarstern and stored in a -20 degrees Celsius freezer. Each of the cores was sub-sampled, melted at room temperature, and processed for salinity within one or two days. The practical salinity was estimated by measuring the electrical conductivity and temperature of the melted samples using a WTW Cond 3151 salinometer equipped with a Tetra-Con 325 four-electrode conductivity cell. The practical salinity represents the the salinity estimated from the electrical conductivity of the solution. The dataset also contains derived variables, including sea ice density, brine volume fraction, and the Rayleigh number.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-01-30
    Description: We present sea ice temperature and salinity data from first-year ice (FYI) and second-year ice (SYI) relevant to the temporal development of sea ice permeability and brine drainage efficiency from the early growth phase in October 2019 to the onset of spring warming in May 2020. Our dataset was collected in the central Arctic Ocean during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Expedition in 2019 to 2020. MOSAiC was an international transpolar drift expedition in which the German icebreaker RV Polarstern anchored into an ice floe to gain new insights into Arctic climate over a full annual cycle. In October 2019, RV Polarstern moored to an ice floe in the Siberian sector of the Arctic at 85 degrees north and 137 degrees east to begin the drift towards the North Pole and the Fram Strait via the Transpolar Drift Stream. The data presented here were collected during the first three legs of the expedition, so all the coring activities took place on the same floe. The end dates of legs 1, 2, and 3 were 13 December, 24 February, and 4 June, respectively. The dataset contributed to a baseline study entitled, Deciphering the properties of different Arctic ice types during the growth phase of the MOSAiC floes: Implications for future studies. The study highlights downward directed gas pathways in FYI and SYI by inferring sea ice permeability and potential brine release from several time series of temperature and salinity measurements. The physical properties presented in this paper lay the foundation for subsequent analyses on actual gas contents measured in the ice cores, as well as air-ice and ice-ocean gas fluxes. Sea ice cores were collected with a Kovacs Mark II 9 cm diameter corer. To measure ice temperatures, about 4.5 cm deep holes were drilled into the core (intervals varied by site and leg) . The temperatures were measured by a digital thermometer within minutes after the cores were retrieved. The ice cores were placed into pre-labelled plastic sleeves sealed at the bottom end. The ice cores were transported to RV Polarstern and stored in a -20 degrees Celsius freezer. Each of the cores was sub-sampled, melted at room temperature, and processed for salinity within one or two days. The practical salinity was estimated by measuring the electrical conductivity and temperature of the melted samples using a WTW Cond 3151 salinometer equipped with a Tetra-Con 325 four-electrode conductivity cell. The practical salinity represents the the salinity estimated from the electrical conductivity of the solution. The dataset also contains derived variables, including sea ice density, brine volume fraction, and the Rayleigh number.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-09-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-03-27
    Description: Recent reports on Arctic underice phytoplankton blooms have directed attention to primary production below the sea ice cover. Such underice blooms cannot be detected from space; thus, methods for autonomous underice measurements are critically needed to extend observations beyond ship-based surveys. One central aspect of the ecology of these blooms is whether they were advected from open-water areas or were able to develop below the ice cover under typically low light conditions. The photoacclimation state of the bloom can provide clues about the growth conditions and therefore its origin. Here we investigate the photoacclimation state of a Phaeocystis pouchetii-dominated underice bloom in the Arctic Ocean using ratios of photoprotective carotenoids (PPC) to photosynthetic carotenoids (PSC) and chlorophyll a. The pigment proxies indicate local growth under the ice pack. Furthermore, a method using in situ light absorption measurements to estimate the PPC:PSC ratio was in agreement with the pigment data. The slope of in situ phytoplankton absorption between 488 and 532nm, affected by both PPC and PSC, had a significant linear relationship to the PPC:PSC ratio, indicating that prediction of photoacclimation state can be obtained from absorption profiles. We also review, with regard to the pigment function, different ways of grouping pigments into PPC or PSC applied in previous studies. Although more validation data sets are needed to assess the impact of pigment packaging on the relationship between PPC:PSC and absorption measurement slopes, our study shows the potential for using in situ absorption measurements to collect information about phytoplankton physiology below sea ice. Plain Language Summary Phytoplankton blooms below sea ice cover, that is, underice blooms, can be advected by ocean currents below the ice pack from ice-free waters where they had sufficient light available for growth. They can also grow below the ice pack if sufficient light is transmitted through the ice, and they are able to adjust to the typically low light conditions. Algal pigments can indicate which of the two scenarios is more likely. Algal pigments capture sunlight for photosynthesis, but some of them are used to protect the algal cells from excess light. The ratio of photoprotective to photosynthetic pigments reveals the photoacclimation state ("short time adjustments") of the algae. In this study we investigate the photoacclimation state of an Arctic underice bloom based on pigment ratios, which indicate local growth below the ice pack. Furthermore, we validate a method to estimate the pigment ratios from light absorption measurements carried out with an instrument in the water column. Studies like these are important for developing methods to study remote areas. Ship-based surveys can only cover a restricted area, and satellite remote sensing does not provide biological information from ice-covered waters. Our study shows promising results for using water column instruments to study phytoplankton physiology.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-11-25
    Description: Climate change affects the Arctic environment with regards to permafrost thaw, changes in the riverine runoff and subsequent export of fresh water and terrestrial material to the Arctic Ocean. In this context, the Fram Strait represents a major pathway for export to the Atlantic basin. We assess the potential of visible wavelength dissolved organic matter fluorescence (VIS-FDOM) to trace the origin of Arctic outflow waters. Oceanographic surveys were performed in the Fram Strait, as well as on the east Greenland shelf (following the East Greenland Current), in late summer 2012 and 2013. Meteoric (fmw), sea-ice melt (fsim), Atlantic (faw) and Pacific (fpw) water fractions were determined and FDOM components were identified by PARAFAC modeling. In Fram Strait and east Greenland shelf, a robust correlation between VIS-FDOM and fmw was apparent, suggesting it as a reliable tracer of polar waters. However, variability was observed in the origin of polar waters, in relation to contribution of faw and fpw, between the sampled years. VIS-FDOM traced this variability, and distinguished between the origins of the halocline waters as originating in either the Eurasian or Canada basins. The findings presented highlight the potential of designing in situ DOM fluorometers to trace the freshwater origins and decipher water mass dynamics in the region.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...