GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 105 (1990), S. 650-661 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Meta-igneous granulite (MIG) xenoliths in lavas from Mount Ruapehu, Taupo Volcanic Zone, New Zealand, have variable but relatively high δ18O (+8.2 to +11.7) and 87Sr/86Sr (0.70506 to 0.70872), and εNd ranging from +1.5 to +6.2. They show a strong positive correlation between 87Sr/86Sr and δ18O, both of which are also broadly correlated with Mg number, but lack any correlation between 87Sr/86Sr and εNd. The xenoliths have been mineralogically re-equilibrated at lower-crustal temperatures (800–930°C) and pressures (7–10 kbar). Geochemical and isotopic evidence suggests they are fragments of oceanic crust that have been altered previously in an ocean floor hydrothermal system. Alternatively, they may be igneous rocks of unknown origin hydrothermally altered in the lower crust. Irrespective of this uncertainty, the xenoliths provide rare samples of the lower crustal basement beneath Taupo Volcanic Zone and represent a potential source rock for the voluminous rhyolites and ignimbrites that dominate the zone.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-06-30
    Description: Brothers volcano, of the Kermadec intraoceanic arc, is host to a hydrothermal system unique among seafloor hydrothermal systems known anywhere in the world. It has two distinct vent fields, known as the NW Caldera and Cone sites, whose geology, permeability, vent fluid compositions, mineralogy, and ore-forming conditions are in stark contrast to each other. The NW Caldera site strikes for ∼600 m in a SW–NE direction with chimneys occurring over a ∼145-m depth interval, between ∼1,690 and 1,545 m. At least 100 dead and active sulfide chimney spires occur in this field and are typically 2–3 m in height, with some reaching 6–7 m. Their ages (at time of sampling) fall broadly into three groups: 〈4, 23, and 35 years old. The chimneys typically occur near the base of individual fault-controlled benches on the caldera wall, striking in lines orthogonal to the slopes. Rarer are massive sulfide crusts 2–3 m thick. Two main types of chimney predominate: Cu-rich (up to 28.5 wt.% Cu) and, more commonly, Zn-rich (up to 43.8 wt.% Zn). Geochemical results show that Mo, Bi, Co, Se, Sn, and Au (up to 91 ppm) are correlated with the Cu mineralization, whereas Cd, Hg, Sb, Ag, and As are associated with the dominant Zn-rich mineralization. The Cone site comprises the Upper Cone site atop the summit of the recent (main) dacite cone and the Lower Cone site that straddles the summit of an older, smaller, more degraded dacite cone on the NE flank of the main cone. Huge volumes of diffuse venting are seen at the Lower Cone site, in contrast to venting at both the Upper Cone and NW Caldera sites. Individual vents are marked by low-relief (≤0.5 m) mounds comprising predominately native sulfur with bacterial mats. Vent fluids of the NW Caldera field are focused, hot (≤300°C), acidic (pH ≥ 2.8), metal-rich, and gas-poor. Calculated end-member fluids from NW Caldera vents indicate that phase separation has occurred, with Cl values ranging from 93% to 137% of seawater values. By contrast, vent fluids at the Cone site are diffuse, noticeably cooler (≤122°C), more acidic (pH 1.9), metal-poor, and gas-rich. Higher-than-seawater values of SO4 and Mg in the Cone vent fluids show that these ions are being added to the hydrothermal fluid and are not being depleted via normal water/rock interactions. Iron oxide crusts 3 years in age cover the main cone summit and appear to have formed from Fe-rich brines. Evidence for magmatic contributions to the hydrothermal system at Brothers includes: high concentrations of dissolved CO2 (e.g., 206 mM/kg at the Cone site); high CO2/3He; negative δD and δ18OH2O for vent fluids; negative δ34S for sulfides (to −4.6‰), sulfur (to −10.2‰), and δ15N2 (to −3.5‰); vent fluid pH values to 1.9; and mineral assemblages common to high-sulfidation systems. Changing physicochemical conditions at the Brothers hydrothermal system, and especially the Cone site, occur over periods of months to hundreds of years, as shown by interlayered Cu + Au- and Zn-rich zones in chimneys, variable fluid and isotopic compositions, similar shifts in 3He/4He values for both Cone and NW Caldera sites, and overprinting of “magmatic” mineral assemblages by water/rock-dominated assemblages. Metals, especially Cu and possibly Au, may be entering the hydrothermal system via the dissolution of metal-rich glasses. They are then transported rapidly up into the system via magmatic volatiles utilizing vertical (∼2.5 km long), narrow (∼300-m diameter) “pipes,” consistent with evidence of vent fluids forming at relatively shallow depths. The NW Caldera and Cone sites are considered to represent stages along a continuum between water/rock- and magmatic/hydrothermal-dominated end-members.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: Large igneous province subduction is a rare process on Earth. A modern example is the subduction of the oceanic Hikurangi Plateau beneath the southern Kermadec arc, offshore New Zealand. This segment of the arc has the largest total lava volume erupted and the highest volcano density of the entire Kermadec arc. Here we show that Kermadec arc lavas south of B32°S have elevated Pb and Sr and low Nd isotope ratios, which argues, together with increasing seafloor depth, forearc retreat and crustal thinning, for initial Hikurangi Plateau—Kermadec arc collision B250 km north of its present position. The combined data set indicates that a much larger portion of the Hikurangi Plateau (the missing Ontong Java Nui piece) than previously believed has already been subducted. Oblique plate convergence caused southward migration of the thickened and buoyant oceanic plateau crust, creating a buoyant ‘Hikurangi’ me´lange beneath the Moho that interacts with ascending arc melts.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-04-30
    Description: Subduction of intraplate seamounts beneath a geochemically depleted mantle wedge provides a seldom opportunity to trace element recycling and mantle flow in subduction zones. Here we present trace element and Sr, Nd and Pb isotopic compositions of lavas from the central Tonga–Kermadec arc, west of the contemporary Louisville–Tonga trench intersection, to provide new insights into the effects of Louisville seamount subduction. Elevated 206Pb/204Pb, 208Pb/204Pb, 86Sr/87Sr in lavas from the central Tonga–Kermadec arc front are consistent with localized input of subducted alkaline Louisville material (lavas and volcaniclastics) into sub-arc partial melts. Furthermore, absolute Pacific Plate motion models indicate an anticlockwise rotation in the subducted Louisville seamount chain that, combined with estimates of the timing of fluid release from the subducting slab, suggests primarily trench-normal mantle flow beneath the central Tonga–Kermadec arc system.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...