GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Coppola, Alysha I; Wiedemeier, Daniel B; Galy, Valier; Haghipour, Negar; Hanke, Ulrich M; Nascimento, Gabriela S; Usman, Muhammed Ojoshogu; Blattmann, Thomas Michael; Reisser, Moritz; Freymond, Chantal V; Zhao, Meixun; Voss, Britta; Wacker, Lukas; Schefuß, Enno; Peucker-Ehrenbrink, Bernhard; Abiven, Samuel; Schmidt, Michael W I; Eglinton, Timothy Ian (2018): Global-scale evidence for the refractory nature of riverine black carbon. Nature Geoscience, 11(8), 584-588, https://doi.org/10.1038/s41561-018-0159-8
    Publication Date: 2023-01-13
    Description: Wildfires and incomplete combustion of fossil fuel produce large amounts of black carbon. Black carbon production and transport are essential components of the carbon cycle. Constraining estimates of black carbon exported from land to ocean is critical, given ongoing changes in land use and climate, which affect fire occurrence and black carbon dynamics. Here, we present an inventory of the concentration and radiocarbon content (∆14C) of particulate black carbon for 18 rivers around the globe. We find that particulate black carbon accounts for about 15.8 ± 0.9% of river particulate organic carbon, and that fluxes of particulate black carbon co-vary with river-suspended sediment, indicating that particulate black carbon export is primarily controlled by erosion. River particulate black carbon is not exclusively from modern sources but is also aged in intermediate terrestrial carbon pools in several high-latitude rivers, with ages of up to 17,000 14C years. The flux-weighted 14C average age of particulate black carbon exported to oceans is 3,700 ± 400 14C years. We estimate that the annual global flux of particulate black carbon to the ocean is 0.017 to 0.037 Pg, accounting for 4 to 32% of the annually produced black carbon. When buried in marine sediments, particulate black carbon is sequestered to form a long-term sink for CO2.
    Type: Dataset
    Format: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet, 29.3 kBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-07-10
    Keywords: Area/locality; Chlorophyll total; Cologne; DEPTH, water; Diatoms, centrales, number of reads; Dictyochophyceae, number of reads; Eukaryotic 18S rRNA gene copy; Eukaryotic 18S rRNA gene copy, standard deviation; Eustigmatophyceae, number of reads; Event label; Gulf of Bothnia, Baltic sea; Karlsruhe; Karlsruhe, Baden-Württemberg, Southern Germany; Kleve; Koblenz; Latitude of event; Longitude of event; Mainz; MULT; Multiple investigations; NIOZ_UU; NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University; Number of sequences; Season; see reference(s); Sequence abundance, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 100 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-02
    Keywords: Area/locality; Black Forest; Black Sea; Branched and isoprenoid tetraether index; BS_MUC242; BS_P110; BS_P128; BS_P167; BS_P168; BS_P177; Calculated after Hopmans et al. (2004); Cologne; Danube; DEPTH, sediment/rock; DEPTH, water; Event label; GeoB11960; GeoB11983; GeoB11986; Godavari; Gulf of Bothnia, Baltic sea; GW170113-0004; GW170115-0004; GW170117-0004; GW170119-0004; Karlsruhe; Karlsruhe, Baden-Württemberg, Southern Germany; Kerch Strait; Kleve; Koblenz; LATITUDE; Long chain diol, C28 1,13-diol; Long chain diol, C28 1,13-diol, fractional abundance; Long chain diol, C28 1,14-diol; Long chain diol, C28 1,14-diol, fractional abundance; Long chain diol, C30 1,13-diol; Long chain diol, C30 1,13-diol, fractional abundance; Long chain diol, C30 1,14-diol; Long chain diol, C30 1,14-diol, fractional abundance; Long chain diol, C30 1,15-diol; Long chain diol, C30 1,15-diol, fractional abundance; Long chain diol, C32 1,15-diol; Long chain diol, C32 1,15-diol, fractional abundance; LONGITUDE; M72/3b; Mainz; Meteor (1986); MIC; MIC-15; MIC-18; MIC-3; MiniCorer; MULT; Multiple investigations; NIOZ_UU; NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University; Offshore Kobuleti; Sample type; Season; see reference(s); Site
    Type: Dataset
    Format: text/tab-separated-values, 3166 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lattaud, Julie; Kirkels, Frédérique M S A; Peterse, Francien; Freymond, Chantal V; Eglinton, Timothy Ian; Hefter, Jens; Mollenhauer, Gesine; Balzano, Sergio; Villanueva, Laura; van der Meer, Marcel T J; Hopmans, Ellen C; Sinninghe Damsté, Jaap S; Schouten, Stefan (2018): Long-chain diols in rivers: distribution and potential biological sources. Biogeosciences, 15(13), 4147-4161, https://doi.org/10.5194/bg-15-4147-2018
    Publication Date: 2024-02-02
    Description: Long-chain diols (LCDs) occur widespread in marine environments and also in lakes and rivers. Transport of LCDs from rivers may impact the distribution of LCDs in coastal environments, however relatively little is known about the distribution and biological sources of LCDs in river systems. In this study, we investigated the distribution of LCDs in suspended particulate matter (SPM) of three river systems (Godavari, Danube, and Rhine) in relation with precipitation, temperature, and source catchments. The dominant long-chain diol is the C32 1,15-diol followed by the C30 1,15-diol in all studied river systems. In regions influenced by marine waters, such as delta systems, the fractional abundance of the C30 1,15-diol is substantially higher than in the river itself, suggesting different LCD producers in marine and freshwater environments. A change in the LCD distribution along the downstream transects of the rivers studied was not observed. However, an effect of river flow is observed; i.e., the concentration of the C32 1,15-diol is higher in stagnant waters such as reservoirs and during seasons with river low stands. A seasonal change in the LCD distribution was observed in the Rhine, likely due to a change in the producers. Eukaryotic diversity analysis by 18S rRNA gene sequencing of SPM from the Rhine showed extremely low abundances of sequences (i.e., 〈0.32% of total reads) related to known algal LCD producers. Furthermore, incubation of the river water with 13C-labeled bicarbonate did not result in 13C incorporation into LCDs. This indicates that the LCDs present are mainly of fossil origin in the fast flowing part of the Rhine. Overall, our results suggest that the LCD producers in rivers predominantly reside in lakes or side ponds that are part of the river system.
    Keywords: Black Forest; Black Sea; BS_MUC242; BS_P110; BS_P128; BS_P167; BS_P168; BS_P177; Cologne; Danube; GeoB11960; GeoB11983; GeoB11986; Godavari; Gulf of Bothnia, Baltic sea; GW170113-0004; GW170115-0004; GW170117-0004; GW170119-0004; Karlsruhe; Karlsruhe, Baden-Württemberg, Southern Germany; Kerch Strait; Kleve; Koblenz; M72/3b; Mainz; Meteor (1986); MIC; MIC-15; MIC-18; MIC-3; MiniCorer; MULT; Multiple investigations; NIOZ_UU; NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University; Offshore Kobuleti
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-09-10
    Description: Long-chain diols (LCDs) occur widespread in marine environments and also in lakes and rivers. Transport of LCDs from rivers may impact the distribution of LCDs in coastal environments, however relatively little is known about the distribution and biological sources of LCDs in river systems. In this study, we investigated the distribution of LCDs in suspended particulate matter (SPM) of three river systems (Godavari, Danube, and Rhine) in relation with precipitation, temperature, and source catchments. The dominant long-chain diol is the C32 1,15-diol followed by the C30 1,15-diol in all studied river systems. In regions influenced by marine waters, such as delta systems, the fractional abundance of the C30 1,15-diol is substantially higher than in the river itself, suggesting different LCD producers in marine and freshwater environments. A change in the LCD distribution along the downstream transects of the rivers studied was not observed. However, an effect of river flow is observed; i.e., the concentration of the C32 1,15-diol is higher in stagnant waters such as reservoirs and during seasons with river low stands. A seasonal change in the LCD distribution was observed in the Rhine, likely due to a change in the producers. Eukaryotic diversity analysis by 18S rRNA gene sequencing of SPM from the Rhine showed extremely low abundances of sequences (i.e., 〈0.32% of total reads) related to known algal LCD producers. Furthermore, incubation of the river water with 13C-labeled bicarbonate did not result in 13C incorporation into LCDs. This indicates that the LCDs present are mainly of fossil origin in the fast-flowing part of the Rhine. Overall, our results suggest that the LCD producers in rivers predominantly reside in lakes or side ponds that are part of the river system.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Nature Geoscience 11 (2018): 584-588, doi:10.1038/s41561-018-0159-8.
    Description: Wildfires and incomplete combustion of fossil fuel produce large amounts of black carbon. Black carbon production and transport are essential components of the carbon cycle. Constraining estimates of black carbon exported from land to ocean is critical, given ongoing changes in land use and climate, which affect fire occurrence and black carbon dynamics. Here, we present an inventory of the concentration and radiocarbon content (∆14C) of particulate black carbon for 18 rivers around the globe. We find that particulate black carbon accounts for about 15.8 ± 0.9% of river particulate organic carbon, and that fluxes of particulate black carbon co-vary with river-suspended sediment, indicating that particulate black carbon export is primarily controlled by erosion. River particulate black carbon is not exclusively from modern sources but is also aged in intermediate terrestrial carbon pools in several high-latitude rivers, with ages of up to 17,000 14C years. The flux-weighted 14C average age of particulate black carbon exported to oceans is 3,700 ± 400 14C years. We estimate that the annual global flux of particulate black carbon to the ocean is 0.017 to 0.037 Pg, accounting for 4 to 32% of the annually produced black carbon. When buried in marine sediments, particulate black carbon is sequestered to form a long-term sink for CO2.
    Description: A.C. acknowledges financial support from the University of Zurich Forschungskredit Fellowship and the University of Zurich (grant No. STWF-18-026). M.R., S.A. and M.S. acknowledge support from the University Research Priority Projection Global Change and Biodiversity (URPP-GCB). M.Z. acknowledges support from the National Natural Science Foundation of China (No. 41521064). T.E. acknowledges support from the Swiss National Science Foundation (“CAPS-LOCK” and “CAPS-LOCK2” #200021_140850). V.G. acknowledges financial support from an Independent Study Award from the Woods Hole Oceanographic Institution.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Freymond, C. V., Lupker, M., Peterse, F., Haghipour, N., Wacker, L., Filip, F., et al. (2018). Constraining instantaneous fluxes and integrated compositions of fluvially discharged organic matter. Geochemistry, Geophysics, Geosystems, 19, 2453 2462. doi: 10.1029/2018GC007539.
    Description: Fluvial export of organic carbon (OC) and burial in ocean sediments comprises an important carbon sink, but fluxes remain poorly constrained, particularly for specific organic components. Here OC and lipid biomarker contents and isotopic characteristics of suspended matter determined in depth profiles across an active channel close to the terminus of the Danube River are used to constrain instantaneous OC and biomarker fluxes and integrated compositions during high to moderate discharges. During high (moderate) discharge, the total Danube exports 8 (7) kg/s OC, 7 (3) g/s higher plant‐derived long‐chain fatty acids (LCFA), 34 (21) g/s short‐chain fatty acids (SCFA), and 0.5 (0.2) g/s soil bacterial membrane lipids (brGDGTs). Integrated stable carbon isotopic compositions were TOC: −28.0 (−27.6)‰, LCFA: −33.5 (−32.8)‰ and Δ14C TOC: −129 (−38)‰, LCFA: −134 (−143)‰, respectively. Such estimates will aid in establishing quantitative links between production, export, and burial of OC from the terrestrial biosphere.
    Description: This project was funded by the Swiss National Science Foundation SNF. Grant Number: 200021_140850. F.P. acknowledges funding from NWO‐VENI grant 863.13.016. We thank the sampling crews from both field campaigns (Björn Buggle, James Saenz, Alissa Zuijdgeest, Marilu Tavagna, Stefan Eugen Filip, Silvia Lavinia Filip, Mihai, Clayton Magill, Thomas Blattmann, and Michael Albani), Daniel Montluçon for lab support and Hannah Gies for PCGC work. Figures, tables, and equations can be found in supporting information.
    Keywords: Danube River ; organic carbon ; biomarker ; radiocarbon ; ADCP
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...