GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-01-13
    Description: Here we present the data records (raw data) from 19 fragmentation experiments. In these runs silicic HVR254 dome rock (retrieved from the submarine Havre volcano) was crushed, remelted and fragmented using two different experimental settings: 1. dry runs (records labelled "D"): melt was fragmented by injection of pressurized Ar gas. 2. induced fuel-coolant interaction runs (records labelled "IFCI"): a water layer was established on top of the melt, before gas was injected from below. This caused fragmentation of the melt plug under IFCI conditions. Note that the runs D07, D08, D09, IFCI08 and IFCI09 used a reduced melt mass (100g instead of 250g). Files contain (separated by column) records of: time, trigger signal, force, pressure, microphone, electric field, seismic data. The units and amplification settings used are provided in the file headers. In addition, the results of morphometry analysis (t-tests) are provided in a pdf file. The morphometric analyses of natural ash focused exclusively on the curvi-planar grains dominant in Havre ash samples, labelled "Nat1" - "Nat6". Four types of experimental grains were compared with them: • “DG”: particles from dry runs, from the lab floor • “IG”: grains from open IFCI runs, from the lab floor • “IW”: very small particles from open IFCI runs deposited in water droplets on the walls and ceiling around the experimental area • “IU”: particles from IFCI runs with U-tube, from the water bowl
    Keywords: File content; File format; File name; File size; fragmentation experiments; Havre seamount, Kermadec arc; Havre volcano; HVR254; IFCI; phreatomagmatism; rhyolite; ROCK; Rock sample; submarine volcanism; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 100 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd
    Sedimentology 46 (1999), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 401 (1999), S. 688-690 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The deposits from explosive volcanic eruptions (those eruptions that release mechanical energy over a short time span) are characterized by an abundance of volcanic ash. This ash is produced by fragmentation of the magma driving the eruption and by fragmenting and ejecting parts of the ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-10-01
    Description: Explosive activity and lava dome collapse at stratovolcanoes can lead to pyroclastic density currents (PDCs; mixtures of volcanic gas, air, and volcanic particles) that produce complex deposits and pose a hazard to surrounding populations. Two-dimensional computer simulations of dilute PDCs (characterized by a turbulent suspended load and deposition through a bed load) show that PDC transport, deposition, and hazard potential are sensitive to the shape of the volcano slope (profile) down which they flow. We focus on three generic volcano profiles: straight, concave-upward, and convex-upward. Dilute PDCs that flow down a constant slope gradually decelerate over the simulated run-out distance (5 km in the horizontal direction) due to a combination of sedimentation, which reduces the density of the PDC, and mixing with the atmosphere. However, dilute PDCs down a concave-upward slope accelerate high on the volcano flanks and have less sedimentation until they begin to decelerate over the shallow lower slopes. A convex-upward slope causes dilute PDCs to lose relatively more of their pyroclast load on the upper slopes of a volcano, and although they accelerate as they reach the lower, steeper slopes, the acceleration is reduced because of the upstream loss of pyroclasts (lower density contrast with the atmosphere). Dynamic pressure, a measure of the damage that can be caused by PDCs, reflects these complex relations.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-12-10
    Description: The most recent eruptive activity of Turrialba volcano began on the 5th of January 2010, after more than a century of dormancy. The fragmentation process and aerodynamic behavior of the ash from Turrialba’s vulcanian eruptions were investigated by combining grain-size, petrography, mineralogy, Scanning Electron Microscopy (SEM) and Energy Dispersive System (EDS) analyses. The ash components include variable percentages of accessory fresh (no necessary juvenile) to hydrothermally altered lithics (15 - 50 % vol.) with hydrothermal minerals (≤ 12 % vol.: anhydrite, gypsum, bassanite, alunite, hexahydrite, pyrite, heulandite, native sulfur), clay minerals (8 - 17 % vol.: montmorillonite, halloysite, allophane), and a smaller quantity of fresh glassy ashes (5 - 49 % vol.) as fragments and shards (3 - 20 % vol. tackylite and 2 - 26 % vol. sideromelane), as well as primary and eroded/recycled phenocrysts (3 - 13 % vol.: 1 - 5% vol. plagioclase, 1 - 7 % vol. pyroxene, 0 - 1 % vol. olivine, 0 - 6 % vol. opaques, cristobalite and tridimite), and xenocrysts (≤ 1 % vol.: riebeckite and biotite). The secondary minerals were sourced from the deeper to surficial hydrothermal system. Textural features identified in ash particles (90 - 350 μm) suggest that they were formed by brittle fragmentation of vesicle-poor magma/water interaction; molten structures seems to be related to the ductile behavior of some fragments, probably due to the high temperature (〉 600 °C) of the fumarolic/magmatic system. The percentage of juvenile components was low (1 - 2 % vol.) at the first opening eruptive phase in January 2010, and it increased steadily until the end of 2016 (ca. 12 - 25 % vol.) . The ash eruptions in the Western Crater from 2014 to 2016 were related to one and later two or three simultaneously active vents fed by distinct conduit branches. The alternation of volcanic explosions (VEI: 0 - 2), from closed conduit and the formation of new craters, to open system with phreatomagmatic events, and the repose intervals (inter-eruptive exhalative degassing), were controlled by the rate at which magma ascended and remained in the volcanic edifice. The recent tephra sequence consists of a complex succession of layers generated by contrasting fragmentation and transportation dynamics. They resulted from fully diluted, low temperature (〈 300 °C), pyroclastic density currents (wet surge deposits), originated by short-lived, singlepulse, column collapse of phreatomagmatic columns, which traveled short distances (〈 1000 m) from the vent area and surmounted topographic obstacles, and simultaneous fallout and ballistic ejecta. The fine material, in continuous suspension within the uppermost part of the convective plume, was dispersed into the atmosphere and finally settled down on the Valle Central. The quiescent phases could be related to a temporal cooling of the magmatic dike system or to a waning of magmatic activity at depth. Sequential fragmentation/transport theory (SFT) was used to decompose grain-size distributions into five different sub-populations. A new way of using the resultant fragmentation coefficient to assign sub-populations to different fragmentation mechanisms, even in cases when modes overlapped, is presented. For the first time the corresponding results are consistent with the phreatomagmatic eruptions, as well as with those derived from ab initio fractal model.
    Description: Published
    Description: 7-60
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: N/A or not JCR
    Keywords: Volcanic ash, vulcanian eruptions, pheatomagmatism, eruptive column collapse, pyroclastic surges, hydrothermal alteration, granulometry, SFT, Turrialba volcano, Costa Rica. ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-12-18
    Description: In this paper, we present results of the reconstruction of the total grain size distribution (TGSD) of the material erupted during explosive volcanic eruptions at Campi Flegrei (Italy) considering all components (juvenile, lithic and crystal clasts). To date, the few TGSDs made available have been mostly reconstructed by assuming that the tephra deposits consisted of only one component. This simplification can introduce substantial bias in the interpretation of magma fragmentation mechanisms and significantly affect ash dispersion forecasts, since each tephra component has specific aerodynamic characteristics. By means of field investigations and laboratory analyses on samples collected from deposits of the Agnano-Monte Spina and Astroni eruptions, we reconstructed the TGSDs of juvenile, lithic and crystal components via the Voronoi tessellation method. Our results show how the systematic reconstruction of a TGSD, from the component-specific to the bulk TGSD, can provide important information on magma fragmentation mechanisms and wall-rock erosion processes. Results confirm that the bulk TGSD is the combination of the merging of different component subpopulations, according to their own TGSD, density and relative mass proportions. In addition, the integration of component analysis, TGSD and settling velocity data allowed characterization of the aerodynamic behaviour of each component at variable distances from the vent, which can be related to their own parent grain size distribution. The integration of new data from distal tephra deposits for the considered eruptions has thus allowed a reassessment of the erupted volumes of eruptions considered in this research, which are now 3.17 and 0.63 km3, for Agnano-Monte Spina and Astroni, respectively.
    Description: Published
    Description: id 31
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-12-23
    Description: Pyroclastic density currents are ground hugging gas-particle flows that originate from the collapse of an eruption column or lava dome. They move away from the volcano at high speed, causing devastation. The impact is generally associated with flow dynamic pressure and temperature. Little emphasis has yet been given to flow duration, although it is emerging that the survival of people engulfed in a current strongly depends on the exposure time. The AD 79 event of Somma-Vesuvius is used here to demonstrate the impact of pyroclastic density currents on humans during an historical eruption. At Herculaneum, at the foot of the volcano, the temperature and strength of the flow were so high that survival was impossible. At Pompeii, in the distal area, we use a new model indicating that the current had low strength and low temperature, which is confirmed by the absence of signs of trauma on corpses. Under such conditions, survival should have been possible if the current lasted a few minutes or less. Instead, our calculations demonstrate a flow duration of 17 min, long enough to make lethal the breathing of ash suspended in the current. We conclude that in distal areas where the mechanical and thermal effects of a pyroclastic density currents are diminished, flow duration is the key for survival.
    Description: Published
    Description: 4959
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Pyroclastic density current ; AD 79 Eruption ; 04.08. Volcanology ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-04-03
    Description: The sedimentological, lithological and textural characteristics of the Brown Tuffs (BT) pyroclastic deposits, combined with their grain-size, componentry and geochemical glass compositions, are here investigated to obtain information on the transport and depositional mechanisms of the corresponding pyroclastic density currents (PDCs). The BT are widespread reddish-brown to grey, ash-rich pyroclastic deposits generated by pulsating hydromagmatic explosive activity from the La Fossa Caldera on Vulcano island during the c. 80–6 ka time-stratigraphic interval, and then distributed on most of the Aeolian Islands and Capo Milazzo peninsula (Sicily) and in the Tyrrhenian and Adriatic Sea regions. Near the source area on Vulcano, the BT are characterised by alternating massive and planar to cross stratified lithofacies that result from the stepwise, repeating aggradation of discrete PDC pulses. This alternance is regulated by either fluid escape or granular flow depositional regimes at high clast concentration or grain by grain traction deposition in thewaning diluted stages of the PDCs. Most of the BT on Vulcano showintermittently stratified and massive ash deposits resulting froma pervasive post-depositional disruption of the primary structures. This is induced by upward fluid expulsion associated with dissipation of pore pressure between layers at different grain size (fine to coarse ash) and porosity, as outlined by distinctive upwards bends and pillar-type escape structures through the fluid-filled cracks and rupture points. Massive BT deposits with a faint colour and grain-size banding are widely recognised on Lipari, the nearby island of Vulcano. Based on the presence, at the base of BT depositional units, of cm-thick amalgamation bands containing pumice lapilli, scoria and lithic clasts ripped-up and embedded from the loose underlying pyroclastic units, they are interpreted as deposited by ash-rich PDCs laterally spreading from La Fossa Caldera and moving to Lipari.During their motion to Lipari these currents (likely) crossed a narrow and shallow sea-water inlet which did not stop their advancement but influenced the grain size distribution of those spreading on the Lipari mainland. In this paper, the mechanism of clast erosion and incorporation is outlined across the whole island of Lipari by means of field study, grain-size, and geochemical glass analyses on the different components of the mixed basal bands of the BT. This suggests that the BT PDCs maintained enough flow power as to erode the substratum, hence likely impacting the territory, over a distance up to at least 16–17 km from the volcanic source. Evidence that the BT PDCs exerted a high shear-stress over the loose substratum is also provided by undulated, recumbent flame and rip-up structures at the base of some depositional units in southern and central Lipari. In order to form such bed granular instabilities between the BT and the underlying deposits we calculate that the currents had at least a shear velocity of ca. 2 m s−1 and a shear stress in the range of 1‐4.5 kPa. These results add new insights on the large-scale hazard at the Aeolian Islands and shed new lights on the widespread transport and depositional dynamics of ash flows spreading over the sea and reaching nearby islands, and their interactions with the substratum and the pre-depositional topography. The sedimentological, lithological and textural characteristics of the Brown Tuffs (BT) pyroclastic deposits, combined with their grain-size, componentry and geochemical glass compositions, are here investigated to obtain information on the transport and depositional mechanisms of the corresponding pyroclastic density currents (PDCs). The BT are widespread reddish-brown to grey, ash-rich pyroclastic deposits generated by pulsating hydromagmatic explosive activity from the La Fossa Caldera on Vulcano island during the c. 80–6 ka time-stratigraphic interval, and then distributed on most of the Aeolian Islands and Capo Milazzo peninsula (Sicily) and in the Tyrrhenian and Adriatic Sea regions. Near the source area on Vulcano, the BT are characterised by alternating massive and planar to cross stratified lithofacies that result from the stepwise, repeating aggradation of discrete PDC pulses. This alternance is regulated by either fluid escape or granular flow depositional regimes at high clast concentration or grain by grain traction deposition in thewaning diluted stages of the PDCs. Most of the BT on Vulcano showintermittently stratified and massive ash deposits resulting froma pervasive post-depositional disruption of the primary structures. This is induced by upward fluid expulsion associated with dissipation of pore pressure between layers at different grain size (fine to coarse ash) and porosity, as outlined by distinctive upwards bends and pillar-type escape structures through the fluid-filled cracks and rupture points. Massive BT deposits with a faint colour and grain-size banding are widely recognised on Lipari, the nearby island of Vulcano. Based on the presence, at the base of BT depositional units, of cm-thick amalgamation bands containing pumice lapilli, scoria and lithic clasts ripped-up and embedded from the loose underlying pyroclastic units, they are interpreted as deposited by ash-rich PDCs laterally spreading from La Fossa Caldera and moving to Lipari. During their motion to Lipari these currents (likely) crossed a narrow and shallow sea-water inlet which did not stop their advancement but influenced the grain size distribution of those spreading on the Lipari mainland. In this paper, the mechanism of clast erosion and incorporation is outlined across the whole island of Lipari by means of field study, grain-size, and geochemical glass analyses on the different components of the mixed basal bands of the BT. This suggests that the BT PDCs maintained enough flow power as to erode the substratum, hence likely impacting the territory, over a distance up to at least 16–17 km from the volcanic source. Evidence that the BT PDCs exerted a high shear-stress over the loose substratum is also provided by undulated, recumbent flame and rip-up structures at the base of some depositional units in southern and central Lipari. In order to form such bed granular instabilities between the BT and the underlying deposits we calculate that the currents had at least a shear velocity of ca. 2 m s−1 and a shear stress in the range of 1‐4.5 kPa. These results add new insights on. the large-scale hazard at the Aeolian Islands and shed new lights on the widespread transport and depositional dynamics of ash flows spreading over the sea and reaching nearby islands, and their interactions with the substratum and the pre-depositional topography.
    Description: Published
    Description: 106040
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-06-23
    Description: Nowadays, modeling of tephra fallout hazard is coupled with probabilistic analysis that takes into account the natural variability of the volcanic phenomena in terms of eruption probability, eruption sizes, vent position, and meteorological conditions. In this framework, we present a prototypal methodology to carry out the long-term tephra fallout hazard assessment in southern Italy from the active Neapolitan volcanoes: Somma–Vesuvius, Campi Flegrei, and Ischia. The FALL3D model (v.8.0) has been used to run thousands of numerical simulations (1500 per eruption size class), considering the ECMWF ERA5 meteorological dataset over the last 30 years. The output in terms of tephra ground load has been processed within a new workflow for large-scale, high resolution volcanic hazard assessment, relying on a Bayesian procedure, in order to provide the mean annual frequency with which the tephra load at the ground exceeds given critical thresholds at a target site within a 50-year exposure time. Our results are expressed in terms of absolute mean hazard maps considering different levels of aggregation, from the impact of each volcanic source and eruption size class to the quantification of the total hazard. This work provides for the first time, a multi-volcano probabilistic hazard assessment posed by tephra fallout, comparable with those used for seismic phenomena and other natural disasters. This methodology can be applied to any other volcanic areas or over different exposure times, allowing researchers to account for the eruptive history of the target volcanoes that, when available, could include the occurrence of less frequent large eruptions, representing critical elements for risk evaluations.
    Description: Published
    Description: 2289–2311
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...