GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-12-18
    Description: In this paper, we present results of the reconstruction of the total grain size distribution (TGSD) of the material erupted during explosive volcanic eruptions at Campi Flegrei (Italy) considering all components (juvenile, lithic and crystal clasts). To date, the few TGSDs made available have been mostly reconstructed by assuming that the tephra deposits consisted of only one component. This simplification can introduce substantial bias in the interpretation of magma fragmentation mechanisms and significantly affect ash dispersion forecasts, since each tephra component has specific aerodynamic characteristics. By means of field investigations and laboratory analyses on samples collected from deposits of the Agnano-Monte Spina and Astroni eruptions, we reconstructed the TGSDs of juvenile, lithic and crystal components via the Voronoi tessellation method. Our results show how the systematic reconstruction of a TGSD, from the component-specific to the bulk TGSD, can provide important information on magma fragmentation mechanisms and wall-rock erosion processes. Results confirm that the bulk TGSD is the combination of the merging of different component subpopulations, according to their own TGSD, density and relative mass proportions. In addition, the integration of component analysis, TGSD and settling velocity data allowed characterization of the aerodynamic behaviour of each component at variable distances from the vent, which can be related to their own parent grain size distribution. The integration of new data from distal tephra deposits for the considered eruptions has thus allowed a reassessment of the erupted volumes of eruptions considered in this research, which are now 3.17 and 0.63 km3, for Agnano-Monte Spina and Astroni, respectively.
    Description: Published
    Description: id 31
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-04
    Description: This is a seven-year study (1/7/2011-31/12/2017) of radon monitoring at two sites of Campi Flegrei caldera (Neaples, Southern Italy) that in the last 70 years experienced repeated phases of volcanic unrest. The sites are equipped with devices for radon detection, based on the spectrometry analysis of the α-particles of radon daughters. A hybrid method, as combination of three known methods, is applied for the identification of residuals (anomalies) and trends of the time series of Radon. The results are compared with the following indicators of current caldera unrest: the tremor caused by the major fumarolic vent registered by a seismic station; the cumulative of background seismicity; the maximum vertical deformation acquired by GPS networks during the current phase of uplift; the temperature-pressure of the hydrothermal system estimated based on gas geo-indicators. The comparisons show strong correlation among independent signals and suggest that the extension of the area affected by current Campi Flegrei crisis is larger than the area of seismicity and of intense hydrothermal activity from which the radon stations are 1-4 km away. These results represent an absolute novelty in the study of a such calderic area and mark a significant step forward in the use and interpretation of the radon signal.
    Description: Published
    Description: 9551
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-09-16
    Description: Between 28 March and 1 April 2020, Stromboli volcano erupted, with overflows from the NE crater rim spreading along the barren Sciara del Fuoco slope and reaching the sea along the NW coast of the island. Poor weather conditions did not allow a detailed observation of the crater zone through the cameras monitoring network, but a clear view of the lower slope and the flows expanding in the area allowed us to characterize the flow features. This evidence was integrated with satellite, GBInSAR, and seismic data, thus enabling a reconstruction of the whole volcanic event, which involved several small collapses of the summit cone and the generation of pyroclastic density currents (PDCs) spreading along the slope and on the sea surface. Satellite monitoring allowed for the mapping of the lava flow field and the quantification of the erupted volume, and GBInSAR continuous measurements detected the crater widening and the deflation of the summit cone caused by the last overflow. The characterization of the seismicity made it possible to identify the signals that are associated with the propagation of PDCs along the volcano flank and, for the first time, to recognize the signal that is produced by the impact of the PDCs on the coast.
    Description: This work has been financially supported by the “Presidenza del Consiglio dei Ministri—Dipartimento della Protezione Civile” (Presidency of the Council of Ministers–Department of Civil Protection) (DPC-UNIFI Agreement 2019–2021; Scientific Responsibility: N.C.); this publication, however, does not necessarily reflect the position and the official policies of the Department. Additional funds for paper publication have been provided by INGV-OE.
    Description: Published
    Description: 3010
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Stromboli ; Volcanic hazard ; Volcanic hazard assessment ; Multidisciplinary data integration ; Stromboli Volcano monitoring ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-10-21
    Description: In this study, we use a doubly stochastic model to develop a short-term eruption forecasting method based on precursory signals. The method enhances the Failure Forecast Method (FFM) equation, which represents the potential cascading of signals leading to failure. The reliability of such forecasts is affected by uncertainty in data and volcanic system behavior and, sometimes, a classical approach poorly predicts the time of failure. To address this, we introduce stochastic noise into the original ordinary differential equation, converting it into a stochastic differential equation, and systematically characterize the uncertainty. Embedding noise in the model can enable us to have greater forecasting skill by focusing on averages and moments. In our model, the prediction is thus perturbed inside a range that can be tuned, producing probabilistic forecasts. Furthermore, our doubly stochastic formulation is particularly powerful in that it provides a complete posterior probability distribution, allowing users to determine a worst-case scenario with a specified level of confidence. We verify the new method on simple historical datasets of precursory signals already studied with the classical FFM. The results show the increased forecasting skill of our doubly stochastic formulation. We then present a preliminary application of the method to more recent and complex monitoring signals.
    Description: Published
    Description: San Francisco (CA)
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Keywords: failure forecast method ; Campi Flegrei caldera
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-12-14
    Description: The MURAVES (MUon RAdiography of VESuvius) project is a joint activity participated by INGV, INFN and the Universities of Naples “Federico II” and Florence. The collaboration, following the experience gained within the previous INFN R&D project Mu-Ray, is currently completing the production of a robust four square meter low power consumption detector to be installed on the flank of Mount Vesuvius, an active volcano located on the western coast of Italy. The detector is supposed to collect data for at least one year, thus allowing performing a scan of the structure of the Vesuvius volcanic cone. In this work the status of the project and some parallel activities on muon radiography are presented.
    Description: Published
    Description: id 02015
    Description: 7TM. Sviluppo e Trasferimento Tecnologico
    Description: N/A or not JCR
    Keywords: Muon radiography ; Vesuvius muon radiography ; MURAVES
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-12-14
    Description: In the last few decades, advanced monitoring networks have been extended to the main active volcanoes, providing warnings for variations in volcano dynamics. However, one of the main tasks of modern volcanology is the correct interpretation of surface-monitored signals in terms of magma transfer through the Earth's crust. In this frame, it is crucial to investigate decompression-induced magma degassing as it controls magma ascent towards the surface and, in case of eruption, the eruptive style and the atmospheric dispersal of tephra and gases. Understanding the degassing behaviour is particularly intriguing in the case of poorly explored evolved alkaline magmas. In fact, these melts frequently feed hazardous, highly explosive volcanoes (e.g., Campi Flegrei, Somma-Vesuvius, Colli Albani, Tambora, Azores and Canary Islands), despite their low viscosity that usually promotes effusive and/or weakly explosive eruptions. Decompression experiments, together with numerical models, are powerful tools to examine magma degassing behaviour and constrain field observations from natural eruptive products and monitoring signals. These approaches have been recently applied to evolved alkaline melts, yet numerous open questions remain. To cast new light on the degassing dynamics of evolved alkaline magmas, in this study we present new results from decompression experiments, as well as a critical review of previous experimental works. We achieved a comprehensive dataset of key petrological parameters (i.e., 3D textural data for bubbles and microlites using X-ray computed microtomography, glass volatile contents and nanolite occurrence) from experimental samples obtained through high temperature-high pressure isothermal decompression experiments on trachytic alkaline melts at super-liquidus temperature. We explored systematically a range of final pressures (from 200 to 25 MPa), decompression rates (from 0.01 to 1 MPa s−1), and volatile (H2O and CO2) contents. On these grounds, we integrated coherently literature data from decompression experiments on evolved alkaline (trachytic and phonolitic) melts under various conditions, with the aim to fully constrain the degassing mechanisms and timescales in these magmas. Finally, we simulated numerically the experimental conditions to evaluate strengths and weaknesses in decrypting degassing behaviour from field observations. Our results highlight that bubble formation in evolved alkaline melts is primarily controlled by the initial volatile (H2O and CO2) content during magma storage. In these melts, bubble nucleation needs low supersaturation pressures (≤ 50–112 MPa for homogeneous nucleation, ≤ 13–25 MPa for heterogeneous nucleation), resulting in high bubble number density (~ 1012–1016 m−3), efficient volatile exsolution and thus in severe rheological changes. Moreover, the bubble number density is amplified in CO2-rich melts (mole fraction XCO2 ≥ 0.5), in which continuous bubble nucleation predominates on growth. These conditions typically lead to highly explosive eruptions. However, moving towards slower decompression rates (≤ 10−1 MPa s−1) and H2O-rich melts, permeable outgassing and inertial fragmentation occur, promoting weakly explosive eruptions. Finally, our findings suggest that the exhaustion of CO2 at deep levels, and the consequent transition to a H2O-dominated degassing, can crucially enhance magma vesiculation and ascent. In a hazard perspective, these constraints allow to postulate that time-depth variations of unrest signals could be significantly weaker/shorter (e.g., minor gas emissions and short-term seismicity) during major eruptions than in small-scale events.
    Description: Published
    Description: 103402
    Description: 1V. Storia eruttiva
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 4V. Processi pre-eruttivi
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-01-05
    Description: We present 4 years of continuous seafloor deformation measurements carried out in the Campi Flegrei caldera (Southern Italy), one of the most hazardous and populated volcanic areas in the world. The seafloor sector of the caldera has been monitored since early 2016 by the MEDUSA marine research infrastructure, consisting of four instrumented buoys installed where sea depth is less than 100 m. Each MEDUSA buoy is equipped with a cabled, seafloor module with geophysical and oceanographic sensors and a subaerial GPS station providing seafloor deformation and other environmental measures. Since April 2016, the GPS vertical displacements at the four buoys show a continuous uplift of the seafloor with cumulative measured uplift ranging between 8 and 20 cm. Despite the data being affected by environmental noise associated with sea and meteorological conditions, the horizontal GPS displacements on the buoys show a trend coherent with a radial deformation pattern. We use jointly the GPS horizontal and vertical velocities of seafloor and on-land deformations for modeling the volcanic source, finding that a spherical source fits best the GPS data. The geodetic data produced by MEDUSA has now been integrated with the data flow of other monitoring networks deployed on land at Campi Flegrei.
    Description: Published
    Description: 615178
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Seafloor geodesy, volcanic caldera ; 04.08. Volcanology ; 04.03. Geodesy ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-01-20
    Description: Sub-Task 2 del Task 2: "Realizzazione di un sistema di monitoraggio in tempo reale delle deformazioni del suolo dell'area vulcanica napoletana (Campi Flegrei, Vesuvio ed Ischia) tramite misure GNSS ad alta frequenza (HR-GNSS) e sviluppo di modelli statistici e numerici per la mappatura della probabilità eruttiva a breve termine della caldera dei Campi Flegrei"
    Description: Published
    Description: Workshop in videoconferenza 16-17 Dicembre 2020
    Description: 6SR VULCANI – Servizi e ricerca per la società
    Keywords: Campi flegrei caldera ; failure forecast method
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-01-20
    Description: Episodes of slow uplift and subsidence of the ground, called bradyseism, characterize the recent dynamics of the Campi Flegrei caldera (Italy). In the last decades two major bradyseismic crises occurred, in 1969/1972 and in 1982/1984, with a ground uplift of 1.70 m and 1.85 m, respectively. Thousands of earthquakes, with a maximum magnitude of 4.2, caused the partial evacuation of the town of Pozzuoli in October 1983. This was followed by about 20 years of overall subsidence, about 1 m in total, until 2005. After 2005 the Campi Flegrei caldera has been rising again, with a slower rate, and a total maximum vertical displacement in the central area of ca. 70 cm. The two signals of ground deformation and background seismicity have been found to share similar accelerating trends. The failure forecast method can provide a first assessment of failure time on present‐day unrest signals at Campi Flegrei caldera (Italy) based on the monitoring data collected in [2011, 2020] and under the assumption to extrapolate such a trend into the future. In this study, we apply a probabilistic approach that enhances the well‐established method by incorporating stochastic perturbations in the linearized equations. The stochastic formulation enables the processing of decade‐long time windows of data, including the effects of variable dynamics that characterize the unrest. We provide temporal forecasts with uncertainty quantification, potentially indicative of eruption dates. The basis of the failure forecast method is a fundamental law for failing materials: ẇ^-α ẅ = A, where ẇ is the rate of the precursor signal, and α, A are model parameters that we fit on the data. The solution when α 〉1 is a power law of exponent 1/(1 − α) diverging at time Tf , called failure time. In our case study, Tf is the time when the accelerating signals collected at Campi Flegrei would diverge if we extrapolate their trend. The interpretation of Tf as the onset of a volcanic eruption is speculative. It is important to note that future variations of monitoring data could either slow down the increase so far observed, or suddenly further increase it leading to shorter failure times than those here reported. Data from observations at all locations in the region were also aggregated to reinforce the computations of Tf reducing the impact of observation errors.
    Description: Published
    Description: San Francisco (CA)
    Description: 6SR VULCANI – Servizi e ricerca per la società
    Keywords: Campi flegrei caldera ; monitoring signals ; failure forecast method
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-03-10
    Description: This article presents findings from two episodes of seismicity and gas emission that occurred on 7 October 2015 and 6 December 2019 in Campi Flegrei caldera. This caldera has been affected by long-term unrest since 2004. The 6 December 2019 episode, consisting of a swarm of 38 earthquakes (maximum duration magnitude 3.1, the largest between 1984 and March 2020), occurred at the end of a one month period characterized by an increase in the ground uplift rate from 0:19 0:01 to 0:72 0:05 mm= day. A sudden increase in the fumarolic tremor amplitude, which is a proxy of gas emissionrelated parameters recorded at Solfatara–Pisciarelli hydrothermal area (e.g., CO2 air concentration), was observed during the seismicity episode. The uplift rate decreased immediately after the swarm (0:10 0:01 mm= day), whereas the fumarolic tremor amplitude remained higher than that observed prior to the swarm. Through analyzing the time series of uplift recorded in Pozzuoli (central area of the caldera) from differential measurements on tide gauges, we were able to identify the 2015 episode. This episode was characterized by increasing uplift rates that culminated in a seismic swarm of 33 earthquakes on 7 October, which was followed by decreasing uplift rates. We computed double-difference locations of earthquakes from the two swarms and found that they located along a conduit-like path, coinciding with a high-resistivity contrast zone, previously identified by audiomagnetotelluric measurements. The focal mechanisms of the major earthquakes of both swarms indicate fault planes radial with respect to the maximum uplift area. These phenomena can be interpreted as episodes of the volcanic and (or) hydrothermal system pressurization that culminate in an injection of fluids along the conduit-like path, which behaves as a valve that allows fluid discharge and the temporary depressurization of the source region.
    Description: Published
    Description: 965–975
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...