GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] In oxygen-depleted zones of the open ocean, and in anoxic basins and fjords, denitrification (the bacterial reduction of nitrate to give N2) is recognized as the only significant process converting fixed nitrogen to gaseous N2. Primary production in the oceans is often ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract: Cells of the aerobic denitrifier and heterotrophic nitrifier Thiosphaera pantotropha and of the traditional denitrifier Paracoccus denitrificans were immobilized in a 1.5 mm thick agar layer (biofilm) and submersed in liquid medium. A combined microsensor for O2 and N2O was used to record microprofiles of these two species in biofilms where the reduction of N2O was inhibited by acetylene. Nitrification in T. pantotropha was not affected by the addition of acetylene and by using a diffusion-reaction model to simulate the N2O profiles it was possible to calculate depth profiles of both nitrification and denitrification. The validity of the calculations when both nitrification and denitrification were operating in concert was confirmed by performing identical calculations on data obtained for a P. denitrificans biofilm. At high NO3− concentrations, part of the NO3− reduced by T. pantotropha biofilms was reduced only to NO2− and N2O production thus did not reflect total NO3− reduction. When NO2− and no NO3− was present in the water above the biofilm N2O production was recorded in the anoxic zone directly below the oxic zone. Nitrous oxide production was never detected in the oxic zone of the biofilms, although aerobic denitrification was described for the original isolate of this bacterium. The growth rate of T. pantotropha in the oxic region of the biofilms was estimated to be 0.42 h−1 which is slightly higher than rates previously obtained in liquid culture. In the T. pantotropha biofilms nitrification was calculated to account for more than 50% of the O2 consumption whereas this process only consumed about 10% of the O2 in liquid culture.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology ecology 10 (1992), S. 0 
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract: Because of a revival in the controversy surrounding ‘aerobic denitrification’, especially in relation to Thiosphaera pantotropha, activity in aerobic batch cultures was evaluated using gas chromatography and mass spectrometry after the addition of 15N-labelled NH4+ and NO2−. Aerobic denitrifying activity in T. pantotropha was present, but only at about 10% of the originally-reported levels. The activity of ‘Pseudomonas denitrificans’ was similar to previously-reported values. Alcaligenes faecalis showed significant aerobic denitrifying activity, producing almost equivalent amounts of N2 and N2O. An unidentified pseudomonad, isolate G4, presumably requires anoxia for enzyme activity as it did not denitrify aerobically, even though it has a constitutive denitrifying pathway.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 101 (1992), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Microzonation of denitrification in trickling filter biofilms was studied using a combined microsensor for O2 and N2O. Denitrification was measured as a function of concentrations of O2, NO3−, organic matter and NH4+ and was found to occur only in part of the biofilm. At increased concentrations of NO3− the thickness of the denitrifying zone increased and thereby increased the total denitrification whereas addition of dissolved organic matter increased the rates of denitrification within the denitrifying part of the biofilm, expressed per volume biofilm. The presence of NH4+ decreased the rate of NO3− assimilation and thereby increased the availability of NO3− for denitrification. Denitrification was only found at O2 concentrations below approximately 20 μM. The toxic zone normally extended 0.2–0.3 mm below the biofilm surface, but when the biofilm was exposed to light photosynthetically produced O2 pushed the oxic-anoxic interface down to 1.3 mm. Denitrification stopped when O2 was introduced to the denitrifying zone, but even after exposure to O2 for 18 h denitrification began immediately after returning to anoxic conditions. Steady state in denitrification was then reached in only 30 min and the rate found then was identical to the rate before exposure to O2, as well as the rate 15 h after return to anoxia. The immediate onset of denitrification suggest that most of the denitrifiers in the biofilm possessed constitutive enzyme systems for denitrification.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-02-01
    Description: A major percentage of fixed nitrogen (N) loss in the oceans occurs within nitrite-rich oxygen minimum zones (OMZs) via denitrification and anammox. It remains unclear to what extent ammonium and nitrite oxidation co-occur, either supplying or competing for substrates involved in nitrogen loss in the OMZ core. Assessment of the oxygen (O2) sensitivity of these processes down to the O2 concentrations present in the OMZ core (〈10 nmol⋅L−1) is therefore essential for understanding and modeling nitrogen loss in OMZs. We determined rates of ammonium and nitrite oxidation in the seasonal OMZ off Concepcion, Chile at manipulated O2 levels between 5 nmol⋅L−1 and 20 μmol⋅L−1. Rates of both processes were detectable in the low nanomolar range (5–33 nmol⋅L−1 O2), but demonstrated a strong dependence on O2 concentrations with apparent half-saturation constants (Kms) of 333 ± 130 nmol⋅L−1 O2 for ammonium oxidation and 778 ± 168 nmol⋅L−1 O2 for nitrite oxidation assuming one-component Michaelis–Menten kinetics. Nitrite oxidation rates, however, were better described with a two-component Michaelis–Menten model, indicating a high-affinity component with a Km of just a few nanomolar. As the communities of ammonium and nitrite oxidizers were similar to other OMZs, these kinetics should apply across OMZ systems. The high O2 affinities imply that ammonium and nitrite oxidation can occur within the OMZ core whenever O2 is supplied, for example, by episodic intrusions. These processes therefore compete with anammox and denitrification for ammonium and nitrite, thereby exerting an important control over nitrogen loss.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...