GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Keywords
Language
  • 1
    Keywords: Hochschulschrift ; Golf von Bengalen ; Miozän ; Monsun
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (VII, 112 Seiten) , Illustrationen
    DDC: 551.609
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: While the mantle roots directly beneath Archean cratons have been relatively well studied because of their economic importance, much less is known about the genesis, age, composition and thickness of the mantle lithosphere beneath the regions that surround the cratons. Despite this knowledge gap, it is fundamentally important to establish the nature of relationships between this circum-cratonic mantle and that beneath the cratons, including the diamond potential of circum-cratonic regions. Here we present mineral and bulk elemental and isotopic compositions for kimberlite-borne mantle xenoliths from the Parry Peninsula and Central Victoria Island, Arctic Canada. These xenoliths provide key windows into the lithospheric mantle underpinning regions to the North and Northwest of the Archean Slave craton, where the presence of cratonic material has been proposed. The mantle xenolith data are supplemented by mineral concentrate data obtained during diamond exploration. The mineral and whole rock chemistry of peridotites from both localities is indistinguishable from that of typical cratonic mantle lithosphere. The cool mantle paleogeotherms defined by mineral thermobarometry reveal that the lithospheric mantle beneath the Parry Peninsula and Central Victoria Island terranes extended well into the diamond stability field at the time of kimberlite eruption, and this is consistent with the recovery of diamonds from both kimberlite fields. Bulk xenolith Se and Te contents, and highly siderophile element (including Os, Ir, Pt, Pd and Re) abundance systematics, plus corresponding depletion ages derived from Re-Os isotope data suggest that the mantle beneath these parts of Arctic Canada formed in the Paleoproterozoic Era, at ∼2 Ga, rather than in the Archean. The presence of a diamondiferous Paleoproterozoic mantle root is part of the growing body of global evidence for diamond generation in mantle roots that stabilized well after the Archean. In the context of regional tectonics, we interpret the highly depleted mantle compositions beneath both studied regions as formed by mantle melting associated with hydrous metasomatism in the major Paleoproterozoic Wopmay-Great Bear-Hottah arc systems. These ∼2 Ga arc systems were subsequently accreted along the margin of the Slave craton to form a craton-like thick lithosphere with diamond potential thereby demonstrating the importance of subduction accretion in building up Earth’s long-lived continental terranes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-08
    Description: The cause of rapid hydrological changes in the tropical West Pacific during the last deglaciation remains controversial. In order to test whether these changes were triggered by abrupt climate change events in the North Atlantic Ocean, variations in precipitation during the last deglaciation (18–10 ka) were extracted from proxy records of chemical weathering and terrigenous input in the western Philippine Sea (WPS). The evolution of chemical weathering and terrigenous input since 27 ka was reconstructed using the chemical index of alteration (CIA), elemental ratios (K/Al, TOC/TN and Ti/Ca), δ13Corg, terrigenous fraction abundance and flux data from International Marine Global Change Study Program (IMAGES) core MD06-3054 collected on the upper continental slope of eastern Luzon (northern Philippines). Sediment deposited during the Last Glacial Maximum (LGM) shows weathering equal to or slightly greater than Holocene sediment in the WPS. This unusual state of chemical weathering, which is inconsistent with lower air temperatures and decreased precipitation in Luzon during the LGM, may be due to reworking of poorly consolidated sediments on the eastern Luzon continental shelf during the LGM sea-level lowstand. Rapid changes in chemical weathering, characterized by higher intensity during the Heinrich event 1 (H1) and Younger Dryas (YD) and lower intensity during the Bølling-Allerød (B/A), were linked to rapid variations in precipitation in the WPS during the last deglaciation. The higher terrigenous inputs during the LGM relative to those of the Holocene were controlled by sea-level changes rather than precipitation. The terrigenous inputs show a long-term decline during the last deglaciation, punctuated by brief spikes during the H1 and YD related to sea-level rises and rapid precipitation changes in the WPS, respectively. The proxy records of chemical weathering and terrigenous input from eastern Luzon suggest high rainfall during the H1 and YD events, consistent with inferred rainfall patterns based on Fe/Ca records from offshore Mindanao. Rapid precipitation changes in the WPS did not coincide with migrations of the Intertropical Convergence Zone (ITCZ) but, rather, were related to state shifts of the El Niño-Southern Oscillation (ENSO) during the last deglaciation. Based on proxy records and modeling results, we argue that the Atlantic meridional overturning circulation (AMOC) controlled rapid precipitation changes in the tropical West Pacific through zonal shifts of ENSO or meridional migration of the ITCZ during the last deglaciation. Our findings highlight the dominant role of the North Atlantic Ocean in the tropical hydrologic cycle during the last deglaciation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: The South Asian monsoon (SAM) is a major component of the global climate system and influences the lives of more than a billion people. Despite its importance, it remains difficult to predict. Thus, it is crucial to understand how the monsoon behaved in the past under different boundary conditions such as a warmer world with reduced continental ice cover as we may experience in the near future and to apply this knowledge for the improvement of future projections. Furthermore, feedbacks which operate between the various forcing mechanisms of the monsoon, such as tectonics and climate as well as the associated changes in weathering and erosion regimes in the catchment areas of the SAM, need to be better understood on tectonic to orbital timescales. (...)
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Highlights • Main trunk and tributary provenance not stable until after late Miocene. • Hydraulic sorting drives fine and coarse sediment 87Sr/86Sr and decoupling. • Sagaing Fault beheaded tributaries after 14 Ma in west and 11 Ma in east. • Quaternary provenance reflects post-10 Ma inversion and entrenchment. Abstract The deposits of large Asian rivers with unique drainage geometries have attracted considerable attention due to their explanatory power concerning tectonism, surface uplift and upstream drainage evolution. This study presents the first petrographic, heavy mineral, Nd and Sr isotope geochemistry, and detrital zircon geochronology results from the Holocene Irrawaddy megadelta alongside modern and ancient sedimentary provenance datasets to assess the late Neogene evolution of the Irrawaddy River. Contrary to models advocating a steady post-middle Miocene river, we reveal an evolution of the Irrawaddy River more compatible with regional evidence for kinematic reorganization in Myanmar during late-stage India-Asia collision. Quaternary sediments are remarkably consistent in terms of provenance but highlight significant decoupling amongst fine and coarse fraction 87Sr/86Sr and due to hydraulic sorting. Only well after the late Miocene do petrographic, heavy mineral, isotope geochemistry, and detrital zircon U–Pb results from the trunk Irrawaddy and its tributaries achieve modern-day signatures. The primary driver giving rise to the geometry and provenance signature of the modern Irrawaddy River was regional late Miocene (≤10 Ma) basin inversion coupled with uplift and cumulative displacement along the Sagaing Fault. Middle to late Miocene provenance signatures cannot be reconciled with modern river geometries, and thus require significant loss of headwaters feeding the Chindwin subbasin after ∼14 Ma and the northern Shwebo subbasin after ∼11 Ma. Large-scale reworking after ∼7 Ma is evidenced by modern Irrawaddy River provenance, by entrenchment of the nascent drainage through Plio-Pleistocene inversion structures, and in the transfer of significant sediment volumes to the Andaman Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Tectonics and regional monsoon strength control weathering and erosion regimes of the watersheds feeding into the Bay of Bengal, which are important contributors to global climate evolution via carbon cycle feedbacks. The detailed mechanisms controlling the input of terrigenous clay to the Bay of Bengal on tectonic to orbital timescales are, however, not yet well understood. We produced orbital‐scale resolution geochemical records for International Ocean Discovery Program Site U1443 (southern Bay of Bengal) across five key climatic intervals of the middle to late Miocene (15.8 – 9.5 Ma). Our new radiogenic Sr, Nd, and Pb isotope time series of clays transported to the Ninetyeast Ridge suggest that the individual contributions from different erosional sources overall remained remarkably consistent during the Miocene despite major tectonic reorganizations in the Himalayas. On orbital timescales, however, high‐resolution data from the five investigated intervals show marked fluctuations of all three isotope systems. Interestingly, the variability was much higher within the Miocene Climatic Optimum (around 16‐15 Ma) and across the major global cooling (~13.9‐13.8 Ma) until ~13.5 Ma, than during younger time intervals. This change is attributed to a major restriction on the supply of High Himalayan erosion products due to migration of the peak precipitation area towards the frontal domains of the Himalayas and the Indo‐Burman Ranges. The transient excursions of the radiogenic isotope signals on orbital timescales most likely reflect climatically driven shifts in monsoon strength.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: The late Miocene was a period of declining CO2 levels and extensive environmental changes, which likely had a large impact on monsoon strength as well as on the weathering and erosion intensity in the South Asian Monsoon domain. To improve our understanding of these feedback systems, detrital clays from the southern Bay of Bengal (International Ocean Discovery Program Site U1443) were analysed for the radiogenic isotope compositions of Sr, Nd, and Pb to reconstruct changes in sediment provenance and weathering regime related to South Asian Monsoon rainfall from 9 to 5 Ma. The 100 kyr resolution late Miocene to earliest Pliocene record suggests overall low variability in the provenance of clays deposited on the Ninetyeast Ridge. However, at 7.3 Ma, Nd and Pb isotope compositions indicate a switch to an increased relative contribution from the Irrawaddy River (by ∼10 %). This shift occurred during the global benthic δ13C decline and we suggest that global cooling and increasing aridity resulted in an eastward shift of precipitation patterns leading to a more focussed erosion of the Indo-Burman Ranges. Sr isotope compositions were decoupled from Nd and Pb isotope signatures and became more radiogenic between 6 and 5 Ma. Grassland expansion generating thick, easily weatherable soils may have led to an environment supporting intense chemical weathering which is likely responsible for the elevated detrital clay 87Sr/86Sr ratios during this time. This change in Sr isotope signatures may also have contributed to the late Miocene increase of the global seawater Sr isotope composition.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: other
    Format: other
    Format: other
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-07-21
    Description: Tectonics and regional monsoon strength control weathering and erosion regimes of the watersheds feeding into the Bay of Bengal, which are important contributors to global climate evolution via carbon cycle feedbacks. The detailed mechanisms controlling the input of terrigenous clay to the Bay of Bengal on tectonic to orbital timescales are, however, not yet well understood. We produced orbital‐scale resolution geochemical records for International Ocean Discovery Program Site U1443 (southern Bay of Bengal) across five key climatic intervals of the middle to late Miocene (15.8–9.5 Ma). Our new radiogenic Sr, Nd, and Pb isotope time series of clays transported to the Ninetyeast Ridge suggest that the individual contributions from different erosional sources overall remained remarkably consistent during the Miocene despite major tectonic reorganizations in the Himalayas. On orbital timescales, however, high‐resolution data from the five investigated intervals show marked fluctuations of all three isotope systems. Interestingly, the variability was much higher within the Miocene Climatic Optimum (around 16–15 Ma) and across the major global cooling (~13.9–13.8 Ma) until ~13.5 Ma, than during younger time intervals. This change is attributed to a major restriction on the supply of High Himalayan erosion products due to migration of the peak precipitation area toward the frontal domains of the Himalayas and the Indo‐Burman Ranges. The transient excursions of the radiogenic isotope signals on orbital timescales most likely reflect climatically driven shifts in monsoon strength.
    Description: Key Points: A consistent mix of clay sources contributed to the Bay of Bengal throughout the middle to late Miocene A marked change in detrital Sr, Nd, and Pb isotope variability at 13.5 Ma was related to Miocene global cooling Transient orbital‐scale fluctuations in clay source most likely reflect changes in monsoon intensity
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Keywords: 551 ; Bay of Bengal ; IODP Site U1443 ; Miocene ; sediment provenance ; Himalayas ; weathering ; erosion
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-03-23
    Description: The late Miocene was a period of declining CO2 levels and extensive environmental changes, which likely had a large impact on monsoon strength as well as on the weathering and erosion intensity in the South Asian Monsoon domain. To improve our understanding of these feedback systems, detrital clays from the southern Bay of Bengal (International Ocean Discovery Program Site U1443) were analyzed for the radiogenic isotope compositions of Sr, Nd, and Pb to reconstruct changes in sediment provenance and weathering regime related to South Asian Monsoon rainfall from 9 to 5 Ma. The 100 kyr resolution late Miocene to earliest Pliocene record suggests overall low variability in the provenance of clays deposited on the Ninetyeast Ridge. However, at 7.3 Ma, Nd and Pb isotope compositions indicate a switch to an increased relative contribution from the Irrawaddy River (by ∼10%). This shift occurred during the global benthic δ13C decline, and we suggest that global cooling and increasing aridity resulted in an eastward shift of precipitation patterns leading to a more focused erosion of the Indo‐Burman Ranges. Sr isotope compositions were decoupled from Nd and Pb isotope signatures and became more radiogenic between 6 and 5 Ma. Grassland expansion generating thick, easily weatherable soils may have led to an environment supporting intense chemical weathering, which is likely responsible for the elevated detrital clay 87Sr/86Sr ratios during this time. This change in Sr isotope signatures may also have contributed to the late Miocene increase of the global seawater Sr isotope composition.
    Description: Plain Language Summary: The South Asian or Indian monsoon affects the lives of billions. Through the erosion and weathering of rocks, the monsoon also has the potential to remove carbon dioxide from the atmosphere through increased weathering in the region including the Himalaya Mountains. The late Miocene, between 9 and 5 million years ago, was a period of global cooling and proliferation of grasslands in different regions including South Asia. Here, we examine the composition of clays formed by rock weathering during the late Miocene to determine their source region around the Bay of Bengal. The results suggest a generally stable mixture of sources with the strongest sources being regions with the highest monsoon rainfall today. We identify slight changes in the mixture of sources, which accompany a global change in carbon cycling, highlighting the role monsoon climate likely played in these changes. Toward the end of the Miocene, we identify a change in the Sr isotopes, which was not caused by source changes but by the strength of the rock weathering. This change has been observed in global records and it seems likely that it was driven by rock weathering in the South Asian Monsoon region.
    Description: Highlights: Radiogenic isotope compositions of detrital clays from the Bay of Bengal indicate a generally stable provenance from 9 to 5 Ma. A step change in Nd and Pb isotope compositions at ∼7.3 Ma reflects a climatically driven eastward shift in precipitation patterns resulting in enhanced erosion of the Indo‐Burman Ranges. Elevated 87Sr/86Sr between 6 and 5 Ma was likely related to increased chemical weathering caused by thicker soils and by C4 plant expansion.
    Description: DFG
    Description: ANR
    Description: IODP
    Keywords: ddc:551.302 ; ddc:551.701
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jonell, T., Giosan, L., Clift, P., Carter, A., Bretschneider, L., Hathorne, E., Barbarano, M., Garzanti, E., Vezzoli, G., & Naing, T. No modern Irrawaddy River until the late Miocene-Pliocene. Earth and Planetary Science Letters, 584, (2022): 117516, https://doi.org/10.1016/j.epsl.2022.117516.
    Description: The deposits of large Asian rivers with unique drainage geometries have attracted considerable attention due to their explanatory power concerning tectonism, surface uplift and upstream drainage evolution. This study presents the first petrographic, heavy mineral, Nd and Sr isotope geochemistry, and detrital zircon geochronology results from the Holocene Irrawaddy megadelta alongside modern and ancient sedimentary provenance datasets to assess the late Neogene evolution of the Irrawaddy River. Contrary to models advocating a steady post-middle Miocene river, we reveal an evolution of the Irrawaddy River more compatible with regional evidence for kinematic reorganization in Myanmar during late-stage India-Asia collision. Quaternary sediments are remarkably consistent in terms of provenance but highlight significant decoupling amongst fine and coarse fraction 87Sr/86Sr and due to hydraulic sorting. Only well after the late Miocene do petrographic, heavy mineral, isotope geochemistry, and detrital zircon U–Pb results from the trunk Irrawaddy and its tributaries achieve modern-day signatures. The primary driver giving rise to the geometry and provenance signature of the modern Irrawaddy River was regional late Miocene (≤10 Ma) basin inversion coupled with uplift and cumulative displacement along the Sagaing Fault. Middle to late Miocene provenance signatures cannot be reconciled with modern river geometries, and thus require significant loss of headwaters feeding the Chindwin subbasin after ∼14 Ma and the northern Shwebo subbasin after ∼11 Ma. Large-scale reworking after ∼7 Ma is evidenced by modern Irrawaddy River provenance, by entrenchment of the nascent drainage through Plio-Pleistocene inversion structures, and in the transfer of significant sediment volumes to the Andaman Sea.
    Description: TNJ was supported in initial stages of this project by a Postdoctoral Research Fellowship at UQ and software support by LSU. LG thanks support from the Andrew W. Mellon Foundation via Woods Hole Oceanographic Institution. The Charles T. McCord chair at LSU funded coring and detrital zircon U–Pb geochronology essential to the study.
    Keywords: Provenance ; Sediment ; Irrawaddy ; Zircon ; Isotope geochemistry ; Petrography
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...