GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Aerosol and Air Quality Research, Taiwan Association for Aerosol Research, Vol. 16, No. 3 ( 2016), p. 568-580
    Type of Medium: Online Resource
    ISSN: 1680-8584 , 2071-1409
    Language: English
    Publisher: Taiwan Association for Aerosol Research
    Publication Date: 2016
    detail.hit.zdb_id: 2715139-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Sustainability, MDPI AG, Vol. 12, No. 14 ( 2020-07-17), p. 5777-
    Abstract: Successful mitigation of air pollution in large cities requires information about the structure of emission sources and their contribution to total atmospheric load. The presented research demonstrates a possibility of application of isotope tracers for the estimation of contribution of different sources to the carbonaceous fraction of PM2.5 (Particulate Matter containing fraction below 2.5 μm) collected in the urban atmosphere of Krakow, Poland during the summer and winter seasons. Isotope mass balance approach was used to perform source apportionment analysis for those two seasons. The analysis showed that the dominant source of the carbonaceous fraction of PM2.5 in Krakow is coal burning during the winter season and biogenic emissions during the summer season. Sensitivity analysis revealed that the uncertainty of the percentage contribution of different sources to the overall carbon load of the analyzed PM2.5 fraction is in order of a few percent.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nano Letters, American Chemical Society (ACS), Vol. 19, No. 10 ( 2019-10-09), p. 7054-7061
    Type of Medium: Online Resource
    ISSN: 1530-6984 , 1530-6992
    Language: English
    Publisher: American Chemical Society (ACS)
    Publication Date: 2019
    detail.hit.zdb_id: 2048866-X
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 18, No. 12 ( 2018-06-22), p. 8789-8805
    Abstract: Abstract. The flow of the Himalayan rivers, a key source of fresh water for more than a billion people primarily depends upon the strength, behaviour and duration of the Indian summer monsoon (ISM) and the western disturbances (WD), two contrasting circulation regimes of the regional atmosphere. An analysis of the 2H and 18O isotope composition of daily precipitation collected along the southern foothills of the Himalayas, combined with extensive backward trajectory modelling, was used to gain deeper insight into the mechanisms controlling the isotopic composition of precipitation and the origin of atmospheric moisture and precipitation during ISM and WD periods. Daily precipitation samples were collected during the period from September 2008 to December 2011 at six stations, extending from Srinagar in the west (Kashmir state) to Dibrugarh in the east (Assam state). In total, 548 daily precipitation samples were collected and analysed for their stable isotope composition. It is suggested that the gradual reduction in the 2H and 18O content of precipitation in the study region, progressing from δ18O values close to zero down to ca. −10 ‰ in the course of ISM evolution, stems from regional, large-scale recycling of moisture-driven monsoonal circulation. Superimposed on this general trend are short-term fluctuations of the isotopic composition of rainfall, which might have stem from local effects such as enhanced convective activity and the associated higher degree of rainout of moist air masses (local amount effect), the partial evaporation of raindrops, or the impact of isotopically heavy moisture generated in evapotranspiration processes taking place in the vicinity of rainfall sampling sites. Seasonal footprint maps constructed for three stations representing the western, central and eastern portions of the Himalayan region indicate that the influence of monsoonal circulation reaches the western edges of the Himalayan region. While the characteristic imprint of monsoonal air masses (increase of monthly rainfall amount) can be completely absent in the western Himalayas, the onset of the ISM period in this region is still clearly visible in the isotopic composition of daily precipitation. A characteristic feature of daily precipitation collected during the WD period is the gradual increase of 2H and 18O content, reaching positive δ2H and δ18O values towards the end of the period. This trend can be explained by the growing importance of moisture of continental origin as a source of daily precipitation. High deuterium-excess (d-excess) values of daily rainfall recorded at the monitoring stations (38 cases in total, range from 20.6 to 44.0 ‰) are attributed to moisture of continental origin released into the atmosphere during the evaporation of surface water bodies and/or soil water evaporation.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 20, No. 21 ( 2020-11-03), p. 12675-12695
    Abstract: Abstract. A severe reduction of greenhouse gas emissions is necessary to reach the objectives of the Paris Agreement. The implementation and continuous evaluation of mitigation measures requires regular independent information on emissions of the two main anthropogenic greenhouse gases, carbon dioxide (CO2) and methane (CH4). Our aim is to employ an observation-based method to determine regional-scale greenhouse gas emission estimates with high accuracy. We use aircraft- and ground-based in situ observations of CH4, CO2, carbon monoxide (CO), and wind speed from two research flights over the Upper Silesian Coal Basin (USCB), Poland, in summer 2018. The flights were performed as a part of the Carbon Dioxide and Methane (CoMet) mission above this European CH4 emission hot-spot region. A kriging algorithm interpolates the observed concentrations between the downwind transects of the trace gas plume, and then the mass flux through this plane is calculated. Finally, statistic and systematic uncertainties are calculated from measurement uncertainties and through several sensitivity tests, respectively. For the two selected flights, the in-situ-derived annual CH4 emission estimates are 13.8±4.3 and 15.1±4.0 kg s−1, which are well within the range of emission inventories. The regional emission estimates of CO2, which were determined to be 1.21±0.75 and 1.12±0.38 t s−1, are in the lower range of emission inventories. CO mass balance emissions of 10.1±3.6 and 10.7±4.4 kg s−1 for the USCB are slightly higher than the emission inventory values. The CH4 emission estimate has a relative error of 26 %–31 %, the CO2 estimate of 37 %–62 %, and the CO estimate of 36 %–41 %. These errors mainly result from the uncertainty of atmospheric background mole fractions and the changing planetary boundary layer height during the morning flight. In the case of CO2, biospheric fluxes also add to the uncertainty and hamper the assessment of emission inventories. These emission estimates characterize the USCB and help to verify emission inventories and develop climate mitigation strategies.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Geoscientific Model Development, Copernicus GmbH, Vol. 13, No. 4 ( 2020-04-16), p. 1925-1943
    Abstract: Abstract. Methane is the second most important greenhouse gas in terms of anthropogenic radiative forcing. Since pre-industrial times, the globally averaged dry mole fraction of methane in the atmosphere has increased considerably. Emissions from coal mining are one of the primary anthropogenic methane sources. However, our knowledge about different sources and sinks of methane is still subject to great uncertainties. Comprehensive measurement campaigns and reliable chemistry–climate models, are required to fully understand the global methane budget and to further develop future climate mitigation strategies. The CoMet 1.0 campaign (May to June 2018) combined airborne in situ, as well as passive and active remote sensing measurements to quantify the emissions from coal mining in the Upper Silesian Coal Basin (USCB, Poland). Roughly 502 kt of methane is emitted from the ventilation shafts per year. In order to help with the flight planning during the campaigns, we performed 6 d forecasts using the online coupled, three-time nested global and regional chemistry–climate model MECO(n). We applied three-nested COSMO/MESSy instances going down to a spatial resolution of 2.8 km over the USCB. The nested global–regional model system allows for the separation of local emission contributions from fluctuations in the background methane. Here, we introduce the forecast set-up and assess the impact of the model's spatial resolution on the simulation of methane plumes from the ventilation shafts. Uncertainties in simulated methane mixing ratios are estimated by comparing different airborne measurements to the simulations. Results show that MECO(3) is able to simulate the observed methane plumes and the large-scale patterns (including vertically integrated values) reasonably well. Furthermore, we obtain reasonable forecast results up to forecast day four.
    Type of Medium: Online Resource
    ISSN: 1991-9603
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2456725-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 14, No. 2 ( 2021-02-26), p. 1525-1544
    Abstract: Abstract. The intensive measurement campaign CoMet 1.0 (Carbon Dioxide and Methane Mission) took place during May and June 2018, with a focus on greenhouse gases over Europe. CoMet 1.0 aimed at characterising the distribution of CH4 and CO2 over significant regional sources with the use of a fleet of research aircraft as well as validating remote sensing measurements from state-of-the-art instrumentation installed on board against a set of independent in situ observations. Here we present the results of over 55 h of accurate and precise in situ measurements of CO2, CH4 and CO mole fractions made during CoMet 1.0 flights with a cavity ring-down spectrometer aboard the German research aircraft HALO (High Altitude and LOng Range Research Aircraft), together with results from analyses of 96 discrete air samples collected aboard the same platform. A careful in-flight calibration strategy together with post-flight quality assessment made it possible to determine both the single-measurement precision as well as biases against respective World Meteorological Organization (WMO) scales. We compare the result of greenhouse gas observations against two of the available global modelling systems, namely Jena CarboScope and CAMS (Copernicus Atmosphere Monitoring Service). We find overall good agreement between the global models and the observed mole fractions in the free tropospheric range, characterised by very low bias values for the CAMS CH4 and the CarboScope CO2 products, with a mean free tropospheric offset of 0 (14) nmol mol−1 and 0.8 (1.3) µmol mol−1 respectively, with the numbers in parentheses giving the standard uncertainty in the final digits for the numerical value. Higher bias is observed for CAMS CO2 (equal to 3.7 (1.5) µmol mol−1), and for CO the model–observation mismatch is variable with height (with offset equal to −1.0 (8.8) nmol mol−1). We also present laboratory analyses of air samples collected throughout the flights, which include information on the isotopic composition of CH4, and we demonstrate the potential of simultaneously measuring δ13C−CH4 and δ2H−CH4 from air to determine the sources of enhanced methane signals using even a limited number of discrete samples. Using flasks collected during two flights over the Upper Silesian Coal Basin (USCB, southern Poland), one of the strongest methane-emitting regions in the European Union, we were able to use the Miller–Tans approach to derive the isotopic signature of the measured source, with values of δ2H equal to −224.7 (6.6) ‰ and δ13C to −50.9 (1.1) ‰, giving significantly lower δ2H values compared to previous studies in the area.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 21, No. 23 ( 2021-12-01), p. 17345-17371
    Abstract: Abstract. Methane (CH4) is the second most important anthropogenic greenhouse gas, whose atmospheric concentration is modulated by human-induced activities, and it has a larger global warming potential than carbon dioxide (CO2). Because of its short atmospheric lifetime relative to that of CO2, the reduction of the atmospheric abundance of CH4 is an attractive target for short-term climate mitigation strategies. However, reducing the atmospheric CH4 concentration requires a reduction of its emissions and, therefore, knowledge of its sources. For this reason, the CO2 and Methane (CoMet) campaign in May and June 2018 assessed emissions of one of the largest CH4 emission hot spots in Europe, the Upper Silesian Coal Basin (USCB) in southern Poland, using top-down approaches and inventory data. In this study, we will focus on CH4 column anomalies retrieved from spectral radiance observations, which were acquired by the 1D nadir-looking passive remote sensing Methane Airborne MAPper (MAMAP) instrument, using the weighting-function-modified differential optical absorption spectroscopy (WFM-DOAS) method. The column anomalies, combined with wind lidar measurements, are inverted to cross-sectional fluxes using a mass balance approach. With the help of these fluxes, reported emissions of small clusters of coal mine ventilation shafts are then assessed. The MAMAP CH4 column observations enable an accurate assignment of observed fluxes to small clusters of ventilation shafts. CH4 fluxes are estimated for four clusters with a total of 23 ventilation shafts, which are responsible for about 40 % of the total CH4 mining emissions in the target area. The observations were made during several overflights on different days. The final average CH4 fluxes for the single clusters (or sub-clusters) range from about 1 to 9 t CH4 h−1 at the time of the campaign. The fluxes observed at one cluster during different overflights vary by as much as 50 % of the average value. Associated errors (1σ) are usually between 15 % and 59 % of the average flux, depending mainly on the prevailing wind conditions, the number of flight tracks, and the magnitude of the flux itself. Comparison to known hourly emissions, where available, shows good agreement within the uncertainties. If only emissions reported annually are available for comparison with the observations, caution is advised due to possible fluctuations in emissions during a year or even within hours. To measure emissions even more precisely and to break them down further for allocation to individual shafts in a complex source region such as the USCB, imaging remote sensing instruments are recommended.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 23, No. 4 ( 2023-02-27), p. 2699-2728
    Abstract: Abstract. Power plants and large industrial facilities contribute more than half of global anthropogenic CO2 emissions. Quantifying the emissions of these point sources is therefore one of the main goals of the planned constellation of anthropogenic CO2 monitoring satellites (CO2M) of the European Copernicus program. Atmospheric transport models may be used to study the capabilities of such satellites through observing system simulation experiments and to quantify emissions in an inverse modeling framework. How realistically the CO2 plumes of power plants can be simulated and how strongly the results may depend on model type and resolution, however, is not well known due to a lack of observations available for benchmarking. Here, we use the unique data set of aircraft in situ and remote sensing observations collected during the CoMet (Carbon Dioxide and Methane Mission) measurement campaign downwind of the coal-fired power plants at Bełchatów in Poland and Jänschwalde in Germany in 2018 to evaluate the simulations of six different atmospheric transport models. The models include three large-eddy simulation (LES) models, two mesoscale numerical weather prediction (NWP) models extended for atmospheric tracer transport, and one Lagrangian particle dispersion model (LPDM) and cover a wide range of model resolutions from 200 m to 2 km horizontal grid spacing. At the time of the aircraft measurements between late morning and early afternoon, the simulated plumes were slightly (at Jänschwalde) to highly (at Bełchatów) turbulent, consistent with the observations, and extended over the whole depth of the atmospheric boundary layer (ABL; up to 1800 m a.s.l. (above sea level) in the case of Bełchatów). The stochastic nature of turbulent plumes puts fundamental limitations on a point-by-point comparison between simulations and observations. Therefore, the evaluation focused on statistical properties such as plume amplitude and width as a function of distance from the source. LES and NWP models showed similar performance and sometimes remarkable agreement with the observations when operated at a comparable resolution. The Lagrangian model, which was the only model driven by winds observed from the aircraft, quite accurately captured the location of the plumes but generally underestimated their width. A resolution of 1 km or better appears to be necessary to realistically capture turbulent plume structures. At a coarser resolution, the plumes disperse too quickly, especially in the near-field range (0–8 km from the source), and turbulent structures are increasingly smoothed out. Total vertical columns are easier to simulate accurately than the vertical distribution of CO2, since the latter is critically affected by profiles of vertical stability, especially near the top of the ABL. Cross-sectional flux and integrated mass enhancement methods applied to synthetic CO2M data generated from the model simulations with a random noise of 0.5–1.0 ppm (parts per million) suggest that emissions from a power plant like Bełchatów can be estimated with an accuracy of about 20 % from single overpasses. Estimates of the effective wind speed are a critical input for these methods. Wind speeds in the middle of the ABL appear to be a good approximation for plumes in a well-mixed ABL, as encountered during CoMet.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Walter de Gruyter GmbH ; 2016
    In:  Papers on Global Change IGBP Vol. 23, No. 1 ( 2016-01-1), p. 111-126
    In: Papers on Global Change IGBP, Walter de Gruyter GmbH, Vol. 23, No. 1 ( 2016-01-1), p. 111-126
    Abstract: An overview of systematic observations of the trace-gas composition of the atmosphere over southern Poland is presented, against the background of data available for other greenhouse gas (GHG) monitoring stations in Europe. The results of GHG monitoring for three major greenhouse gases (CO 2 , CH 4 , N 2 O) are discussed. Measurements were performed at two locations of contrasting characteristics, i.e. (i) the high-altitude mountain station of Kasprowy Wierch in the High Tatras, representing atmospheric conditions relatively free of local influences, and (ii) an urban station located in the Krakow agglomeration. The GHG data available for the Kasprowy Wierch station were compared with relevant data available for two marine reference stations (Mace Head, Ireland and Terceira Island, Azores), and two continental stations (Hohenpeissenberg, Germany and Pallas-Sammaltunturi, Finland). The growth rates for the CO 2 mole fraction recorded at these five stations reveal only small temporal changes that almost coincide, leading to a quasi-linear increase of the CO 2 mixing ratio over the European continent over the past 20 years. While N 2 O observations also reveal a steady increase over this time period, the mole fraction accounted for by CH 4 is increasing again, after a period of stagnation in the years 2001–2007. The impact of continental sources of CH 4 and N 2 O is seen clearly in the Kasprowy Wierch records. The mean departure between the CH 4 mixing ratios recorded at Kasprowy Wierch and at the marine reference stations in the period 1994–2014 is of 27.3 ppb, and stems from continental emissions of this gas originating mainly from anthropogenic activities (leaking natural-gas distribution networks, landfills and livestock). For N 2 O, a departure of 1 ppb was observed for the period 2009–2014. Comparison of quasi-continuous measurements of CO 2 , CH 4 and N 2 O mixing ratios made in the urban atmosphere of Krakow and at the regional reference site Kasprowy Wierch (located approximately 100 km away), allows for a deeper insight into the mechanisms controlling daily variations in atmospheric mixing ratios of these gases at the two sites. The development of a nocturnal inversion layer in the atmosphere above the city leads to local enhancements of CO 2 , CH 4 and N 2 O mole fractions in the Krakow atmosphere during the night hours, with these exceeding the baseline level significantly.
    Type of Medium: Online Resource
    ISSN: 1730-802X
    Language: Unknown
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2012520-3
    detail.hit.zdb_id: 2629143-5
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...