GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 23, No. 1 ( 2023-01-16), p. 687-709
    Abstract: Abstract. The paper constitutes Part 2 of a study performing a first systematic inter-model comparison of the atmospheric responses to stratospheric aerosol injection (SAI) at various single latitudes in the tropics, as simulated by three state-of-the-art Earth system models – CESM2-WACCM6, UKESM1.0, and GISS-E2.1-G. Building on Part 1 (Visioni et al., 2023) we demonstrate the role of biases in the climatological circulation and specific aspects of the model microphysics in driving the inter-model differences in the simulated sulfate distributions. We then characterize the simulated changes in stratospheric and free-tropospheric temperatures, ozone, water vapor, and large-scale circulation, elucidating the role of the above aspects in the surface SAI responses discussed in Part 1. We show that the differences in the aerosol spatial distribution can be explained by the significantly faster shallow branches of the Brewer–Dobson circulation in CESM2, a relatively isolated tropical pipe and older tropical age of air in UKESM, and smaller aerosol sizes and relatively stronger horizontal mixing (thus very young stratospheric age of air) in the two GISS versions used. We also find a large spread in the magnitudes of the tropical lower-stratospheric warming amongst the models, driven by microphysical, chemical, and dynamical differences. These lead to large differences in stratospheric water vapor responses, with significant increases in stratospheric water vapor under SAI in CESM2 and GISS that were largely not reproduced in UKESM. For ozone, good agreement was found in the tropical stratosphere amongst the models with more complex microphysics, with lower stratospheric ozone changes consistent with the SAI-induced modulation of the large-scale circulation and the resulting changes in transport. In contrast, we find a large inter-model spread in the Antarctic ozone responses that can largely be explained by the differences in the simulated latitudinal distributions of aerosols as well as the degree of implementation of heterogeneous halogen chemistry on sulfate in the models. The use of GISS runs with bulk microphysics demonstrates the importance of more detailed treatment of aerosol processes, with contrastingly different stratospheric SAI responses to the models using the two-moment aerosol treatment; however, some problems in halogen chemistry in GISS are also identified that require further attention. Overall, our results contribute to an increased understanding of the underlying physical mechanisms as well as identifying and narrowing the uncertainty in model projections of climate impacts from SAI.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 18, No. 11 ( 2018-06-15), p. 8409-8438
    Abstract: Abstract. 〉We analyse simulations performed for the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion caused by anthropogenic stratospheric chlorine and bromine. We consider a total of 155 simulations from 20 models, including a range of sensitivity studies which examine the impact of climate change on ozone recovery. For the control simulations (unconstrained by nudging towards analysed meteorology) there is a large spread (±20 DU in the global average) in the predictions of the absolute ozone column. Therefore, the model results need to be adjusted for biases against historical data. Also, the interannual variability in the model results need to be smoothed in order to provide a reasonably narrow estimate of the range of ozone return dates. Consistent with previous studies, but here for a Representative Concentration Pathway (RCP) of 6.0, these new CCMI simulations project that global total column ozone will return to 1980 values in 2049 (with a 1σ uncertainty of 2043–2055). At Southern Hemisphere mid-latitudes column ozone is projected to return to 1980 values in 2045 (2039–2050), and at Northern Hemisphere mid-latitudes in 2032 (2020–2044). In the polar regions, the return dates are 2060 (2055–2066) in the Antarctic in October and 2034 (2025–2043) in the Arctic in March. The earlier return dates in the Northern Hemisphere reflect the larger sensitivity to dynamical changes. Our estimates of return dates are later than those presented in the 2014 Ozone Assessment by approximately 5–17 years, depending on the region, with the previous best estimates often falling outside of our uncertainty range. In the tropics only around half the models predict a return of ozone to 1980 values, around 2040, while the other half do not reach the 1980 value. All models show a negative trend in tropical total column ozone towards the end of the 21st century. The CCMI models generally agree in their simulation of the time evolution of stratospheric chlorine and bromine, which are the main drivers of ozone loss and recovery. However, there are a few outliers which show that the multi-model mean results for ozone recovery are not as tightly constrained as possible. Throughout the stratosphere the spread of ozone return dates to 1980 values between models tends to correlate with the spread of the return of inorganic chlorine to 1980 values. In the upper stratosphere, greenhouse gas-induced cooling speeds up the return by about 10–20 years. In the lower stratosphere, and for the column, there is a more direct link in the timing of the return dates of ozone and chlorine, especially for the large Antarctic depletion. Comparisons of total column ozone between the models is affected by different predictions of the evolution of tropospheric ozone within the same scenario, presumably due to differing treatment of tropospheric chemistry. Therefore, for many scenarios, clear conclusions can only be drawn for stratospheric ozone columns rather than the total column. As noted by previous studies, the timing of ozone recovery is affected by the evolution of N2O and CH4. However, quantifying the effect in the simulations analysed here is limited by the few realisations available for these experiments compared to internal model variability. The large increase in N2O given in RCP 6.0 extends the ozone return globally by ∼ 15 years relative to N2O fixed at 1960 abundances, mainly because it allows tropical column ozone to be depleted. The effect in extratropical latitudes is much smaller. The large increase in CH4 given in the RCP 8.5 scenario compared to RCP 6.0 also lengthens ozone return by ∼ 15 years, again mainly through its impact in the tropics. Overall, our estimates of ozone return dates are uncertain due to both uncertainties in future scenarios, in particular those of greenhouse gases, and uncertainties in models. The scenario uncertainty is small in the short term but increases with time, and becomes large by the end of the century. There are still some model–model differences related to well-known processes which affect ozone recovery. Efforts need to continue to ensure that models used for assessment purposes accurately represent stratospheric chemistry and the prescribed scenarios of ozone-depleting substances, and only those models are used to calculate return dates. For future assessments of single forcing or combined effects of CO2, CH4, and N2O on the stratospheric column ozone return dates, this work suggests that it is more important to have multi-member (at least three) ensembles for each scenario from every established participating model, rather than a large number of individual models.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 23, No. 1 ( 2023-01-16), p. 663-685
    Abstract: Abstract. There is now substantial literature on climate model studies of equatorial or tropical stratospheric SO2 injections that aim to counteract the surface warming produced by rising concentrations of greenhouse gases. Here we present the results from the first systematic intercomparison of climate responses in three Earth system models wherein the injection of SO2 occurs at different latitudes in the lower stratosphere: CESM2-WACCM6, UKESM1.0 and GISS-E2.1-G. The first two use a modal aerosol microphysics scheme, while two versions of GISS-E2.1-G use a bulk aerosol (One-Moment Aerosol, OMA) and a two-moment (Multiconfiguration Aerosol TRacker of mIXing state, MATRIX) microphysics approach, respectively. Our aim in this work is to determine commonalities and differences between the climate model responses in terms of the distribution of the optically reflective sulfate aerosols produced from the oxidation of SO2 and in terms of the surface response to the resulting reduction in solar radiation. A focus on understanding the contribution of characteristics of models transport alongside their microphysical and chemical schemes, and on evaluating the resulting stratospheric responses in different models, is given in the companion paper (Bednarz et al., 2023). The goal of this exercise is not to evaluate these single-point injection simulations as stand-alone proposed strategies to counteract global warming; instead we determine sources and areas of agreement and uncertainty in the simulated responses and, ultimately, the possibility of designing a comprehensive intervention strategy capable of managing multiple simultaneous climate goals through the combination of different injection locations. We find large disagreements between GISS-E2.1-G and the CESM2-WACCM6 and UKESM1.0 models regarding the magnitude of cooling per unit of aerosol optical depth (AOD) produced, which varies from 4.7 K per unit of AOD in CESM2-WACCM6 to 16.7 K in the GISS-E2.1-G version with two-moment aerosol microphysics. By normalizing the results with the global mean response in each of the models and thus assuming that the amount of SO2 injected is a free parameter that can be managed independently, we highlight some commonalities in the overall distributions of the aerosols, in the inter-hemispheric surface temperature response and in shifts to the Intertropical Convergence Zone, as well as some areas of disagreement, such as the extent of the aerosol confinement in the equatorial region and the efficiency of the transport to polar latitudes. In conclusion, we demonstrate that it is possible to use these simulations to produce more comprehensive injection strategies in multiple climate models. However, large differences in the injection magnitudes can be expected, potentially increasing inter-model spreads in some stratospheric quantities (such as aerosol distribution) while reducing the spread in the surface response in terms of temperature and precipitation; furthermore, the selection of the injection locations may be dependent on the models' specific stratospheric transport.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2023
    In:  Geophysical Research Letters Vol. 50, No. 22 ( 2023-11-28)
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 50, No. 22 ( 2023-11-28)
    Abstract: Impacts of Stratospheric Aerosol Injection (SAI) depend on how much surface cooling is to be achieved High latitude circulation, ozone and modes of extratropical variability can vary non‐linearly with the SAI‐induced global surface cooling These potential non‐linearities may add to uncertainties in projections of regional surface impacts under SAI
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2023
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2022
    In:  Geophysical Research Letters Vol. 49, No. 12 ( 2022-06-28)
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 49, No. 12 ( 2022-06-28)
    Abstract: Solar dimming induces previously overlooked stratospheric dynamical response The coupled stratospheric‐tropospheric response exerts a first‐order influence on the Southern Hemisphere (SH) surface climate in the solar dimming experiments The results emphasize the importance of the stratosphere, as well as the troposphere, as an active contributor to the SH climate change
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2022
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 19, No. 15 ( 2019-08-02), p. 9833-9846
    Abstract: Abstract. The atmospheric response to the 11-year solar cycle is separated into the contributions from changes in direct radiative heating and photolysis rates using specially designed sensitivity simulations with the UM-UKCA (Unified Model coupled to the United Kingdom Chemistry and Aerosol model) chemistry–climate model. We perform a number of idealised time-slice experiments under perpetual solar maximum (SMAX) and minimum conditions (SMIN), and we find that contributions from changes in direct heating and photolysis rates are both important for determining the stratospheric shortwave heating, temperature and ozone responses to the amplitude of the 11-year solar cycle. The combined effects of the processes are found to be largely additive in the tropics but nonadditive in the Southern Hemisphere (SH) high latitudes during the dynamically active season. Our results indicate that, in contrast to the original mechanism proposed in the literature, the solar-induced changes in the horizontal shortwave heating rate gradients not only in autumn/early winter but throughout the dynamically active season are important for modulating the dynamical response to changes in solar forcing. In spring, these gradients are strongly influenced by the shortwave heating anomalies at higher southern latitudes, which are closely linked to the concurrent changes in ozone. In addition, our simulations indicate differences in the winter SH dynamical responses between the experiments. We suggest a couple of potential drivers of the simulated differences, i.e. the role of enhanced zonally asymmetric ozone heating brought about by the increased solar-induced ozone levels under SMAX and/or sensitivity of the polar dynamical response to the altitude of the anomalous radiative tendencies. All in all, our results suggest that solar-induced changes in ozone, both in the tropics/mid-latitudes and the polar regions, are important for modulating the SH dynamical response to the 11-year solar cycle. In addition, the markedly nonadditive character of the SH polar vortex response simulated in austral spring highlights the need for consistent model implementation of the solar cycle forcing in both the radiative heating and photolysis schemes.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 17, No. 22 ( 2017-11-20), p. 13801-13818
    Abstract: Abstract. Chemical and dynamical drivers of trends in tropical total-column ozone (TCO3) for the recent past and future periods are explored using the UM-UKCA (Unified Model HadGEM3-A (Hewitt et al., 2011) coupled with the United Kingdom Chemistry and Aerosol scheme) chemistry–climate model. A transient 1960–2100 simulation is analysed which follows the representative concentration pathway 6.0 (RCP6.0) emissions scenario for the future. Tropical averaged (10° S–10° N) TCO3 values decrease from the 1970s, reach a minimum around 2000 and return to their 1980 values around 2040, consistent with the use and emission of halogenated ozone-depleting substances (ODSs), and their later controls under the Montreal Protocol. However, when the ozone column is subdivided into three partial columns (PCO3) that cover the upper stratosphere (PCO3US), lower stratosphere (PCO3LS) and troposphere (PCO3T), significant differences in the temporal behaviour of the partial columns are seen. Modelled PCO3T values under the RCP6.0 emissions scenario increase from 1960 to 2000 before remaining approximately constant throughout the 21st century. PCO3LS values decrease rapidly from 1960 to 2000 and remain constant from 2000 to 2050, before gradually decreasing further from 2050 to 2100 and never returning to their 1980s values. In contrast, PCO3US values decrease from 1960 to 2000, before increasing rapidly throughout the 21st century and returning to 1980s values by  ∼  2020, and reach significantly higher values by 2100. Using a series of idealised UM-UKCA time-slice simulations with concentrations of well-mixed greenhouse gases (GHGs) and halogenated ODS species set to either year 2000 or 2100 levels, we examine the main processes that drive the PCO3 responses in the three regions and assess how these processes change under different emission scenarios. Finally, we present a simple, linearised model to describe the future evolution of tropical stratospheric column ozone values based on terms representing time-dependent abundances of GHG and halogenated ODS.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 19, No. 7 ( 2019-04-17), p. 5209-5233
    Abstract: Abstract. The 11-year solar cycle forcing is recognised as an important atmospheric forcing; however, there remain uncertainties in characterising the effects of solar variability on the atmosphere from observations and models. Here we present the first detailed assessment of the atmospheric response to the 11-year solar cycle in the UM-UKCA (Unified Model coupled to the United Kingdom Chemistry and Aerosol model) chemistry–climate model (CCM) using a three-member ensemble over the recent past (1966–2010). Comparison of the model simulations is made with satellite observations and reanalysis datasets. The UM-UKCA model produces a statistically significant response to the 11-year solar cycle in stratospheric temperatures, ozone and zonal winds. However, there are also differences in magnitude, spatial structure and timing of the signals compared to observational and reanalysis estimates. This could be due to deficiencies in the model performance, and so we include a critical discussion of the model limitations, and/or uncertainties in the current observational estimates of the solar cycle signals. Importantly, in contrast to many previous studies of the solar cycle impacts, we pay particular attention to the role of the chosen analysis method in UM-UKCA by comparing the model composite and a multiple linear regression (MLR) results. We show that the stratospheric solar responses diagnosed using both techniques largely agree with each other within the associated uncertainties; however, the results show that apparently different signals can be identified by the methods in the troposphere and in the tropical lower stratosphere. Lastly, we examine how internal atmospheric variability affects the detection of the 11-year solar responses in the model by comparing the results diagnosed from the three individual ensemble members (as opposed to those diagnosed from the full ensemble). We show overall agreement between the responses diagnosed for the ensemble members in the tropical and mid-latitude mid-stratosphere to lower mesosphere but larger apparent differences at Northern Hemisphere (NH) high latitudes during the dynamically active season. Our UM-UKCA results suggest the need for long data sets for confident detection of solar cycle impacts in the atmosphere, as well as for more research on possible interdependence of the solar cycle forcing with other atmospheric forcings and processes (e.g. Quasi-Biennial Oscillation, QBO; El Niño–Southern Oscillation, ENSO).
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 22, No. 16 ( 2022-08-23), p. 10657-10676
    Abstract: Abstract. Impacts of chlorinated very short-lived substances (Cl-VSLS) on stratospheric chlorine budget over the first two decades of the 21st century are assessed using the Met Office’s Unified Model coupled to the United Kingdom Chemistry and Aerosol (UM-UKCA) chemistry–climate model; this constitutes the most up-to-date assessment and the first study to simulate Cl-VSLS impacts using a whole atmosphere chemistry–climate model. We examine the Cl-VSLS responses using a small ensemble of free-running simulations and two pairs of integrations where the meteorology was “nudged” to either ERA5 or ERA-Interim reanalysis. The stratospheric chlorine source gas injection due to Cl-VSLS estimated from the free-running integrations doubled from ∼40 ppt Cl injected into the stratosphere in 2000 to ∼80 ppt Cl injected in 2019. Combined with chlorine product gas injection, the integrations showed a total of ∼130 ppt Cl injected into the stratosphere in 2019 due to Cl-VSLS. The use of the nudged model significantly increased the abundance of Cl-VSLS simulated in the lower stratosphere relative to the free-running model. Averaged over 2010–2018, simulations nudged to ERAI-Interim and ERA5 showed 20 ppt (i.e. a factor of 2) and 10 ppt (i.e. ∼50 %) more Cl, respectively, in the tropical lower stratosphere at 20 km in the form of Cl-VSLS source gases compared to the free-running case. These differences can be explained by the corresponding differences in the speed of the large-scale circulation. The results illustrate the strong dependence of the simulated stratospheric Cl-VSLS levels on the model dynamical fields. In UM-UKCA, this corresponds to the choice between free-running versus nudged set-up, and to the reanalysis dataset used for nudging. Temporal changes in Cl-VSLS are found to have significantly impacted recent HCl and COCl2 trends in the model. In the tropical lower stratosphere, the inclusion of Cl-VSLS reduced the magnitude of the negative HCl and COCl2 trends (e.g. from ∼-8%(HCl)/decade and ∼-4 ppt(COCl2)/decade at ∼20 km to ∼-6%(HCl)/decade and ∼ −2 ppt(COCl2)/decade in the free running simulations) and gave rise to positive tropospheric trends in both tracers. In the tropics, both the free-running and nudged integrations with Cl-VSLS included compared much better to the observed trends from the ACE-FTS satellite record than the analogous simulations without Cl-VSLS. Since observed HCl trends provide information on the evolution of total stratospheric chlorine and, thus, the effectiveness of the Montreal Protocol, our results demonstrate that Cl-VSLS are a confounding factor in the interpretation of such data and should be factored into future analysis. Unlike the nudged model runs, the ensemble mean free-running integrations did not reproduce the hemispheric asymmetry in the observed mid-latitude HCl and COCl2 trends related to short-term dynamical variability. The individual ensemble members also showed a considerable spread of the diagnosed tracer trends, illustrating the role of natural interannual variability in modulating the diagnosed responses and the need for caution when interpreting both model and observed tracer trends derived over a relatively short time period.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2023
    In:  Geophysical Research Letters Vol. 50, No. 14 ( 2023-07-28)
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 50, No. 14 ( 2023-07-28)
    Abstract: We compare two stratospheric aerosol injection strategies which inject SO 2 at different altitudes to meet the same temperature target The low altitude strategy requires two thirds more injection to provide the same amount of cooling We isolate and quantify the different factors which cause the high altitude injection strategy to cool the surface more efficiently
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2023
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...