GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Reviews of Geophysics, American Geophysical Union (AGU), Vol. 59, No. 1 ( 2021-03)
    Abstract: Sudden stratospheric warmings are dramatic events of the polar stratosphere that affect the atmosphere from the surface to the thermosphere Our understanding of sudden stratospheric warmings has accelerated recently, particularly the predictability of surface weather effects More observations, improved climate models, and big data methods will address uncertainties in key aspects of sudden stratospheric warmings
    Type of Medium: Online Resource
    ISSN: 8755-1209 , 1944-9208
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2021
    detail.hit.zdb_id: 2035391-1
    detail.hit.zdb_id: 209852-0
    detail.hit.zdb_id: 209853-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Environmental Science, Frontiers Media SA, Vol. 10 ( 2022-10-5)
    Abstract: Space-based Earth observation (EO), in the form of long-term climate data records, has been crucial in the monitoring and quantification of slow changes in the climate system—from accumulating greenhouse gases (GHGs) in the atmosphere, increasing surface temperatures, and melting sea-ice, glaciers and ice sheets, to rising sea-level. In addition to documenting a changing climate, EO is needed for effective policy making, implementation and monitoring, and ultimately to measure progress and achievements towards the overarching goals of the United Nations Framework Convention on Climate Change (UNFCCC) Paris Agreement to combat climate change. The best approach for translating EO into actionable information for policymakers and other stakeholders is, however, far from clear. For example, climate change is now self-evident through increasingly intense and frequent extreme events—heatwaves, droughts, wildfires, and flooding—costing human lives and significant economic damage, even though single events do not constitute “climate”. EO can capture and visualize the impacts of such events in single images, and thus help quantify and ultimately manage them within the framework of the UNFCCC Paris Agreement, both at the national level (via the Enhanced Transparency Framework) and global level (via the Global Stocktake). We present a transdisciplinary perspective, across policy and science, and also theory and practice, that sheds light on the potential of EO to inform mitigation, including sinks and reservoirs of greenhouse gases, and adaptation, including loss and damage. Yet to be successful with this new mandate, EO science must undergo a radical overhaul: it must become more user-oriented, collaborative, and transdisciplinary; span the range from fiducial to contextual data; and embrace new technologies for data analysis (e.g., artificial intelligence). Only this will allow the creation of the knowledge base and actionable climate information needed to guide the UNFCCC Paris Agreement to a just and equitable success.
    Type of Medium: Online Resource
    ISSN: 2296-665X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2741535-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Journal of Climate ( 2021-08-30), p. 1-
    In: Journal of Climate, American Meteorological Society, ( 2021-08-30), p. 1-
    Abstract: The relationship of upper tropospheric jet variability to El Niño / Southern Oscillation (ENSO) in reanalysis datasets is analyzed for 1979–2018, revealing robust regional and seasonal variability. Tropical jets associated with monsoons and the Walker circulation are weaker and the zonal mean subtropical jet shifts equatorward in both hemispheres during El Niño, consistent with previous findings. Regional and seasonal variations are analyzed separately for subtropical and polar jets. The subtropical jet shifts poleward during El Niño over the NH eastern Pacific in DJF, and in some SH regions in MAMand SON. Subtropical jet altitudes increase during El Niño, with significant changes in the zonal mean in the NH and during summer/fall in the SH. Though zonal mean polar jet correlations with ENSO are rarely significant, robust regional/seasonal changes occur: The SH polar jet shifts equatorward during El Niño over Asia and the western Pacific in DJF, and poleward over the eastern Pacific in JJA and SON. Polar jets are weaker (stronger) during El Niño in the western (eastern) hemisphere, especially in the SH; conversely, subtropical jets are stronger (weaker) in the western (eastern) hemisphere during El Niño in winter and spring; these opposing changes, along with an anticorrelation between subtropical and polar jet windspeed, reinforce subtropical/polar jet strength differences during El Niño, and suggest ENSO-related covariability of the jets. ENSO-related jet latitude, altitude, and windspeed changes can reach 4(3)°, 0.6(0.3) km, and 6(3) ms −1 , respectively, for the subtropical (polar) jets.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Journal of Climate Vol. 27, No. 9 ( 2014-05-01), p. 3248-3271
    In: Journal of Climate, American Meteorological Society, Vol. 27, No. 9 ( 2014-05-01), p. 3248-3271
    Abstract: A global climatology (1979–2012) from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) shows distributions and seasonal evolution of upper tropospheric jets and their relationships to the stratospheric subvortex and multiple tropopauses. The overall climatological patterns of upper tropospheric jets confirm those seen in previous studies, indicating accurate representation of jet stream dynamics in MERRA. The analysis shows a Northern Hemisphere (NH) upper tropospheric jet stretching nearly zonally from the mid-Atlantic across Africa and Asia. In winter–spring, this jet splits over the eastern Pacific, merges again over eastern North America, and then shifts poleward over the North Atlantic. The jets associated with tropical circulations are also captured, with upper tropospheric westerlies demarking cyclonic flow downstream from the Australian and Asian monsoon anticyclones and associated easterly jets. Multiple tropopauses associated with the thermal tropopause “break” commonly extend poleward from the subtropical upper tropospheric jet. In Southern Hemisphere (SH) summer, the tropopause break, along with a poleward-stretching secondary tropopause, often occurs across the tropical westerly jet downstream of the Australian monsoon region. SH high-latitude multiple tropopauses, nearly ubiquitous in June–July, are associated with the unique polar winter thermal structure. High-latitude multiple tropopauses in NH fall–winter are, however, sometimes associated with poleward-shifted upper tropospheric jets. The SH subvortex jet extends down near the level of the subtropical jet core in winter and spring. Most SH subvortex jets merge with an upper tropospheric jet between May and December; although much less persistent than in the SH, merged NH subvortex jets are common between November and April.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 101, No. 11 ( 2020-11-01), p. E1948-E1971
    Abstract: Climate data records (CDRs) of essential climate variables (ECVs) as defined by the Global Climate Observing System (GCOS) derived from satellite instruments help to characterize the main components of the Earth system, to identify the state and evolution of its processes, and to constrain the budgets of key cycles of water, carbon, and energy. The Climate Change Initiative (CCI) of the European Space Agency (ESA) coordinates the derivation of CDRs for 21 GCOS ECVs. The combined use of multiple ECVs for Earth system science applications requires consistency between and across their respective CDRs. As a comprehensive definition for multi-ECV consistency is missing so far, this study proposes defining consistency on three levels: 1) consistency in format and metadata to facilitate their synergetic use (technical level); 2) consistency in assumptions and auxiliary datasets to minimize incompatibilities among datasets (retrieval level); and 3) consistency between combined or multiple CDRs within their estimated uncertainties or physical constraints (scientific level). Analyzing consistency between CDRs of multiple quantities is a challenging task and requires coordination between different observational communities, which is facilitated by the CCI program. The interdependencies of the satellite-based CDRs derived within the CCI program are analyzed to identify where consistency considerations are most important. The study also summarizes measures taken in CCI to ensure consistency on the technical level, and develops a concept for assessing consistency on the retrieval and scientific levels in the light of underlying physical knowledge. Finally, this study presents the current status of consistency between the CCI CDRs and future efforts needed to further improve it.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: npj Climate and Atmospheric Science, Springer Science and Business Media LLC, Vol. 5, No. 1 ( 2022-06-30)
    Abstract: The COVID-19 restrictions in 2020 have led to distinct variations in NO 2 and O 3 concentrations in China. Here, the different drivers of anthropogenic emission changes, including the effects of the Chinese New Year (CNY), China’s 2018–2020 Clean Air Plan (CAP), and the COVID-19 lockdown and their impact on NO 2 and O 3 are isolated by using a combined model-measurement approach. In addition, the contribution of prevailing meteorological conditions to the concentration changes was evaluated by applying a machine-learning method. The resulting impact on the multi-pollutant Health-based Air Quality Index (HAQI) is quantified. The results show that the CNY reduces NO 2 concentrations on average by 26.7% each year, while the COVID-lockdown measures have led to an additional 11.6% reduction in 2020, and the CAP over 2018–2020 to a reduction in NO 2 by 15.7%. On the other hand, meteorological conditions from 23 January to March 7, 2020 led to increase in NO 2 of 7.8%. Neglecting the CAP and meteorological drivers thus leads to an overestimate and underestimate of the effect of the COVID-lockdown on NO 2 reductions, respectively. For O 3 the opposite behavior is found, with changes of +23.3%, +21.0%, +4.9%, and −0.9% for CNY, COVID-lockdown, CAP, and meteorology effects, respectively. The total effects of these drivers show a drastic reduction in multi-air pollutant-related health risk across China, with meteorology affecting particularly the Northeast of China adversely. Importantly, the CAP’s contribution highlights the effectiveness of the Chinese government’s air-quality regulations on NO 2 reduction.
    Type of Medium: Online Resource
    ISSN: 2397-3722
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2925628-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Public Health Vol. 11 ( 2023-1-19)
    In: Frontiers in Public Health, Frontiers Media SA, Vol. 11 ( 2023-1-19)
    Abstract: Air pollution is one of the leading causes for global deaths and understanding pollutant emission sources is key to successful mitigation policies. Air quality data in the urban, suburban, industrial, and rural areas (UA, SA, IA, and RA) of Jining, Shandong Province in China, were collected to compare the characteristics and associated health risks. The average concentrations of PM 2.5 , PM 10 , SO 2 , NO 2 , and CO show differences of −3.87, −16.67, −19.24, −15.74, and −8.37% between 2017 and 2018. On the contrary, O 3 concentrations increased by 4.50%. The four functional areas exhibited the same seasonal variations and diurnal patterns in air pollutants, with the highest exposure excess risks (ERs) resulting from O 3 . More frequent ER days occurred within the 25–30°C, but much larger ERs are found within the 0–5°C temperature range, attributed to higher O 3 pollution in summer and more severe PM pollution in winter. The premature deaths attributable to six air pollutants can be calculated in 2017 and 2018, respectively. Investigations on the potential source show that the ER of O 3 ( r of 0.86) had the tightest association with the total ER. The bivariate polar plots indicated that the highest health-based air quality index (HAQI) in IA influences the HAQI in UA and SA by pollution transport, and thus can be regarded as the major pollutant emission source in Jining. The above results indicate that urgent measures should be taken to reduce O 3 pollution taking into account the characteristics of the prevalent ozone formation regime, especially in IA in Jining.
    Type of Medium: Online Resource
    ISSN: 2296-2565
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2711781-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2018
    In:  Nature Digest Vol. 15, No. 8 ( 2018-8), p. 34-36
    In: Nature Digest, Springer Science and Business Media LLC, Vol. 15, No. 8 ( 2018-8), p. 34-36
    Type of Medium: Online Resource
    ISSN: 1880-0556
    Language: Unknown
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Elsevier BV ; 2018
    In:  Comptes Rendus Geoscience Vol. 350, No. 7 ( 2018-11), p. 368-375
    In: Comptes Rendus Geoscience, Elsevier BV, Vol. 350, No. 7 ( 2018-11), p. 368-375
    Type of Medium: Online Resource
    ISSN: 1631-0713
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    detail.hit.zdb_id: 2079109-4
    SSG: 11
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Meteorological Monographs, American Meteorological Society, Vol. 59 ( 2019-01-01), p. 27.1-27.62
    Abstract: The stratosphere contains ~17% of Earth’s atmospheric mass, but its existence was unknown until 1902. In the following decades our knowledge grew gradually as more observations of the stratosphere were made. In 1913 the ozone layer, which protects life from harmful ultraviolet radiation, was discovered. From ozone and water vapor observations, a first basic idea of a stratospheric general circulation was put forward. Since the 1950s our knowledge of the stratosphere and mesosphere has expanded rapidly, and the importance of this region in the climate system has become clear. With more observations, several new stratospheric phenomena have been discovered: the quasi-biennial oscillation, sudden stratospheric warmings, the Southern Hemisphere ozone hole, and surface weather impacts of stratospheric variability. None of these phenomena were anticipated by theory. Advances in theory have more often than not been prompted by unexplained phenomena seen in new stratospheric observations. From the 1960s onward, the importance of dynamical processes and the coupled stratosphere–troposphere circulation was realized. Since approximately 2000, better representations of the stratosphere—and even the mesosphere—have been included in climate and weather forecasting models. We now know that in order to produce accurate seasonal weather forecasts, and to predict long-term changes in climate and the future evolution of the ozone layer, models with a well-resolved stratosphere with realistic dynamics and chemistry are necessary.
    Type of Medium: Online Resource
    ISSN: 0065-9401
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 416187-7
    detail.hit.zdb_id: 2630885-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...