GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2020-02-12
    Description: One decade of time-variable gravity field observations from the GRACE satellite mission reveals low-frequency ocean bottom pressure (OBP) variability of up to 2.5 hPa centered at the northern flank of the subtropical gyre in the North Pacific. From a 145 year-long simulation with a coupled chemistry climate model, OBP variability is found to be related to the prevailing atmospheric sea-level pressure and surface wind conditions in the larger North Pacific area. The dominating atmospheric pressure patterns obtained from the climate model run allow in combination with ERA-Interim sea-level pressure and surface winds a reconstruction of the OBP variability in the North Pacific from atmospheric model data only, which correlates favourably (r=0.7) with GRACE ocean bottom pressure observations. The regression results indicate that GRACE-based OBP observations are indeed sensitive to changes in the prevailing sea-level pressure and thus surface wind conditions in the North Pacific, thereby opening opportunities to constrain atmospheric models from satellite gravity observations over the oceans.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    In:  IGS Workshop and Vertical Rates Symposium (Newcastle, England 2010)
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2020-02-12
    Description: Earth orientation parameters (EOPs) are strongly influenced by atmospheric and oceanic mass and motion variations, and therefore may help provide an independent measure of climate variability. Coupled Atmosphere-Ocean General Circulation Models (GCMs) simulate the variations in the atmosphere and the ocean in a physically consistent way. Thus, the GCMs can be inter-compared with respect to the derived EOP variations. Global warming has been shown to exert a major effect on Length-of-Day, caused by an enhancement in atmospheric motion. However, a comprehensive assessment of the impact of climate change on polar motion excitation has not yet been presented. In this paper, an inter-model comparison of a Climate Change signal (A1B – 20C) in Polar Motion is provided for a set of model runs from the WCRP CMIP-3 campaign. The models used in the comparison are the ECHAM5/OM1, GFDL CM2, NCAR CCSM3, and UK MetOffice HadCM3. As an additional fifth model, we use tidal and non-tidal runs from the ECOCTH model, which consists of the ECHAM5/OM1 with a tidal coupler. First, a basic consistency check was performed for multi-century control runs of the models. The twodimensional excitation fields for atmospheric mass and motion, as well as oceanic mass and motion are compared. Also, the globally integrated EOPs are analysed both in time and spectral domain. The comparison yields, e.g., for the atmospheric mass component of polar motion excitation, very good agreement between the models with respect to the annual cycle. In the Taylor diagrams comparing the main EOFs from the two-dimensional excitation fields calculated from the atmospheric mass distribution, we also obtain good agreement. All five main EOFs show correlations in the range of 0.75 to 0.98 in the inter-model comparison. In a second step, the impact of climate change signal, i.e. the difference between two 30-year periods from the beginning and the end of the A1B run, is analysed.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-02-12
    Description: Tide gauge measurements are affected by land movement on almost all global coastlines. Especially in tectonically active areas like Japan, the tide gauge time series are strongly affected by earthquakes and subsequent land movement. Linear trends are calculated from the results of the TIGA repro1 reprocessing campaign. Several examples of unusual land movement at tide gauges as well as continental stations are examined in detail and compared with data from tide gauges, hydrology models, and GRACE water mass. These comprise, e.g., trend changes caused by earthquakes, land movement from draughts, or spurious trends from snow cover on the GPS antenna. Precise weekly positions of 403 Global Positioning System (GPS) stations located worldwide are obtained by reprocessing GPS data of these stations at the time span from January 1998 until December 2007. The used processing algorithm and models as well as the solution and results obtained are presented. Vertical velocities of GPS stations having tracking history longer than 2.5 years are computed and compared with the estimates from the co-located tide gauges and other GPS solutions. The derived time series and vertical motions of continuous GPS at tide gauges stations can be used for correcting tide gauge estimates of regional and global sea level changes. The resulting linear trends and plots of the GPS time series have been made available via FTP at the GFZ Potsdam.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/report
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...