GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-02-01
    Description: Southeast Asian rivers convey large amounts of organic carbon, but little is known about the fate of this terrestrial material in estuaries. Although Southeast Asia is, by area, considered a hotspot of estuarine carbon dioxide (CO2) emissions, studies in this region are very scarce. We measured dissolved and particulate organic carbon, as well as CO2 partial pressures and carbon monoxide (CO) concentrations in two tropical estuaries in Sarawak, Malaysia, whose coastal area is covered by carbon-rich peatlands. We surveyed the estuaries of the rivers Lupar and Saribas during the wet and dry season, respectively. Carbon-to-nitrogen ratios suggest that dissolved organic matter (DOM) is largely of terrestrial origin. We found evidence that a large fraction of this carbon is respired. The median pCO(2) in the estuaries ranged between 640 and 5065 mu atm with little seasonal variation. CO2 fluxes were determined with a floating chamber and estimated to amount to 14-268 mol m(-2) yr(-1), which is high compared to other studies from tropical and subtropical sites. Estimates derived from a merely wind-driven turbulent diffusivity model were considerably lower, indicating that these models might be inappropriate in estuaries, where tidal currents and river discharge make an important contribution to the turbulence driving water-air gas exchange. Although an observed diurnal variability of CO concentrations suggested that CO was photochemically produced, the overall concentrations and fluxes were relatively moderate (0.4-1.3 nmol L-1 and 0.7-1.8 mmol m(-2) yr(-1)) if compared to published data for oceanic or upwelling systems. We attributed this to the large amounts of suspended matter (4-5004 mg L-1), limiting the light penetration depth and thereby inhibiting CO photoproduction. We concluded that estuaries in this region function as an efficient filter for terrestrial organic carbon and release large amounts of CO2 to the atmosphere. The Lupar and Saribas rivers deliver 0.3 +/- 0.2 TgC yr(-1) to the South China Sea as organic carbon and their mid-estuaries release approximately 0.4 +/- 0.2 TgC yr(-1) into the atmosphere as CO2.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Chemistry and Physics, 1 . pp. 61-71.
    Publication Date: 2018-09-26
    Description: We computed high-resolution (1º latitude x 1º longitude) seasonal and annual nitrous oxide (N2O) concentration fields for the Arabian Sea surface layer using a database containing more than 2400 values measured between December 1977 and July 1997. N2O concentrations are highest during the southwest (SW) monsoon along the southern Indian continental shelf. Annual emissions range from 0.33 to 0.70 Tg N2O and are dominated by fluxes from coastal regions during the SW and northeast monsoons. Our revised estimate for the annual N2O flux from the Arabian Sea is much more tightly constrained than the previous consensus derived using averaged in-situ data from a smaller number of studies. However, the tendency to focus on measurements in locally restricted features in combination with insufficient seasonal data coverage leads to considerable uncertainties of the concentration fields and thus in the flux estimates, especially in the coastal zones of the northern and eastern Arabian Sea. The overall mean relative error of the annual N2O emissions from the Arabian Sea was estimated to be at least 65%.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-12-20
    Description: We investigated the influence of the composition of the vertical particle flux on the removal of particle reactive natural radionuclides (Th-230 and Pa-231) from the water column to the sediments. Radionuclide concentrations determined in sediment traps moored in the western, central and eastern Arabian Sea were related to the major components (carbonate, particulate organic matter (POC), opal, lithogenic material) of the particle flux. These data were combined with sediment trap data previously published from the Southern Ocean, Equatorial Pacific and North Atlantic [Z. Chase, R.F. Anderson, M.Q. Fleisher, P.W. Kubik, The influence of particle composition and particle flux on scavenging of Th, Pa and Be in the ocean, Earth Planet. Sci. Lett. 204 (2002) 215-229; J.C. Scholten, F. Fietzke, S. Vogler, M. Rutgers van der Loeff, A. Mangini, W Koeve, J. Waniek. P. Stoffers, A. Antia, J. Kass, Trapping efficiencies of sediment traps from the deep eastern North Atlantic: The Th-230 calibration, Deep Sea Research 1148 (2001) 2383-2408]. The correlations observed between the particle-dissolved distribution coefficients (K-d) of Th-230 and Pa-231 and the concentrations of the particle types depend on the sediment trap data set used. This result suggests that scavenging affinities of the nuclides differ between oceanic regions. Several factors (K-d values, reactive surface areas of particles, inter-correlations in closed data set) can, however, influence the observed relationships and thus hamper the interpretation of these correlation coefficients as a measure of relative scavenging affinities of the nuclides to the particle types investigated. The mean fractionation factor (F(Pa/Th)=K-d(Pa)/(K)d(Th)) from the Equatorial Pacific (F=0.11+/-0.03) is similar to that from the North Atlantic (F(Pa/Th)=0.077+/-0.026), and both are lower than the factors from the Arabian Sea (F(Pa/Th)=0.35+/-0.12) and from the Southern Ocean (F(Pa/Th) 0.87+/-0.4). For opal concentrations exceeding similar to60%, an increase in the fractionation factors is observed causing a higher mean fractionation factor for the Southern Ocean trap data set. For the other areas investigated, differences in the mean fractionation factors cannot be related to the particles types considered. In the Arabian Sea, seasonally variable Pa-231(ex)/Th-230(ex) ratios observed in the sediment traps as well as differences of the ratios between recently deposited phytodetritus (fluff) and normal surface sediments indicate seasonal changes in scavenging processes which the generally accepted reversible scavenging models do not envisage. We assume that variable sinking rates of particles, and/or particles not considered in this study (e.g. colloids, manganese oxides, transparent exopolymer particles) may play an important but as yet unexplored role in deep-water scavenging processes. (C) 2004 Elsevier B.V. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  In: Indian Ocean biogeochemical processes and ecological variability. , ed. by Wiggert, J. D., Hood, R. R., Naqvi, S. W. A., Brink, K. H. and Smith, S. L. AGU (American Geophysical Union), Washington, DC, USA, pp. 365-384.
    Publication Date: 2012-02-23
    Type: Book chapter , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 14 . pp. 1283-1297.
    Publication Date: 2018-03-15
    Description: Despite its importance for the global oceanic nitrogen (N) cycle, considerable uncertainties exist about the N fluxes of the Arabian Sea. On the basis of our recent measurements during the German Arabian Sea Process Study as part of the Joint Global Ocean Flux Study (JGOFS) in 1995 and 1997, we present estimates of various N sources and sinks such as atmospheric dry and wet depositions of N aerosols, pelagic denitrification, nitrous oxide (N2O) emissions, and advective N input from the south. Additionally, we estimated the N burial in the deep sea and the sedimentary shelf denitrification. On the basis of our measurements and literature data, the N budget for the Arabian Sea was reassessed. It is dominated by the N loss due to denitrification, which is balanced by the advective input of N from the south. The role of N fixation in the Arabian Sea is still difficult to assess owing to the small database available; however, there are hints that it might be more important than previously thought. Atmospheric N depositions are important on a regional scale during the intermonsoon in the central Arabian Sea; however, they play only a minor role for the overall N cycling. Emissions of N2O and ammonia, deep-sea N burial, and N inputs by rivers and marginal seas (i.e., Persian Gulf and Red Sea) are of minor importance. We found that the magnitude of the sedimentary denitrification at the shelf might be ∼17% of the total denitrification in the Arabian Sea, indicating that the shelf sediments might be of considerably greater importance for the N cycling in the Arabian Sea than previously thought. Sedimentary and pelagic denitrification together demand ∼6% of the estimated particulate organic nitrogen export flux from the photic zone. The main northward transport of N into the Arabian Sea occurs in the intermediate layers, indicating that the N cycle of the Arabian Sea might be sensitive to variations of the intermediate water circulation of the Indian Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-07
    Description: The sustainability of southern Africa’s natural and managed marine and terrestrial ecosystems is threatened by overuse, mismanagement, population pressures, degradation, and climate change. Counteracting unsustainable development requires a deep understanding of earth system processes and how these are affected by ongoing and anticipated global changes. This information must be translated into practical policy and management interventions. Climate models project that the rate of terrestrial warming in southern Africa is above the global terrestrial average. Moreover, most of the region will become drier. Already there is evidence that climate change is disrupting ecosystem functioning and the provision of ecosystem services. This is likely to continue in the foreseeable future, but impacts can be partly mitigated through urgent implementation of appropriate policy and management interventions to enhance resilience and sustainability of the ecosystems. The recommendations presented in the previous chapters are informed by a deepened scientific understanding of the relevant earth system processes, but also identify research and knowledge gaps. Ongoing disciplinary research remains critical, but needs to be complemented with cross-disciplinary and transdisciplinary research that can integrate across temporal and spatial scales to give a fuller understanding of not only individual components of the complex earth-system, but how they interact.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-01-07
    Description: The southern African subcontinent and its surrounding oceans accommodate globally unique ecoregions, characterized by exceptional biodiversity and endemism. This diversity is shaped by extended and steep physical gradients or environmental discontinuities found in both ocean and terrestrial biomes. The region’s biodiversity has historically been the basis of life for indigenous cultures and continues to support countless economic activities, many of them unsustainable, ranging from natural resource exploitation, an extensive fisheries industry and various forms of land use to nature-based tourism. Being at the continent’s southern tip, terrestrial species have limited opportunities for adaptive range shifts under climate change, while warming is occurring at an unprecedented rate. Marine climate change effects are complex, as warming may strengthen thermal stratification, while shifts in regional wind regimes influence ocean currents and the intensity of nutrient-enriching upwelling. The flora and fauna of marine and terrestrial southern African biomes are of vital importance for global biodiversity conservation and carbon sequestration. They thus deserve special attention in further research on the impacts of anthropogenic pressures including climate change. Excellent preconditions exist in the form of long-term data sets of high quality to support scientific advice for future sustainable management of these vulnerable biomes.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...