GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-03-08
    Description: We present a simulation of Antarctic iceberg drift and melting that includes small, medium‐sized, and giant tabular icebergs with a realistic size distribution. For the first time, an iceberg model is initialized with a set of nearly 7000 observed iceberg positions and sizes around Antarctica. The study highlights the necessity to account for larger and giant icebergs in order to obtain accurate melt climatologies. We simulate drift and lateral melt using iceberg‐draft averaged ocean currents, temperature, and salinity. A new basal melting scheme, originally applied in ice shelf melting studies, uses in situ temperature, salinity, and relative velocities at an iceberg's bottom. Climatology estimates of Antarctic iceberg melting based on simulations of small (≤2.2 km), “small‐to‐medium‐sized" (≤10 km), and small‐to‐giant icebergs (including icebergs 〉10 km) exhibit differential characteristics: successive inclusion of larger icebergs leads to a reduced seasonality of the iceberg meltwater flux and a shift of the mass input to the area north of 58°S, while less meltwater is released into the coastal areas. This suggests that estimates of meltwater input solely based on the simulation of small icebergs introduce a systematic meridional bias; they underestimate the northward mass transport and are, thus, closer to the rather crude treatment of iceberg melting as coastal runoff in models without an interactive iceberg model. Future ocean simulations will benefit from the improved meridional distribution of iceberg melt, especially in climate change scenarios where the impact of iceberg melt is likely to increase due to increased calving from the Antarctic ice sheet.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: We developed a new version of the Alfred Wegener Institute Climate Model (AWI-CM3), which has higher skills in representing the observed climatology and better computational efficiency than its predecessors. Its ocean component FESOM2 (Finite-volumE Sea ice-Ocean Model) has the multi-resolution functionality typical of unstructured-mesh models while still featuring a scalability and efficiency similar to regular-grid models. The atmospheric component OpenIFS (CY43R3) enables the use of the latest developments in the numerical-weather-prediction community in climate sciences. In this paper we describe the coupling of the model components and evaluate the model performance on a variable-resolution (25-125 km) ocean mesh and a 61 km atmosphere grid, which serves as a reference and starting point for other ongoing research activities with AWI-CM3. This includes the exploration of high and variable resolution and the development of a full Earth system model as well as the creation of a new sea ice prediction system. At this early development stage and with the given coarse to medium resolutions, the model already features above-CMIP6-average skills (where CMIP6 denotes Coupled Model Intercomparison Project phase 6) in representing the climatology and competitive model throughput. Finally we identify remaining biases and suggest further improvements to be made to the model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-26
    Description: Viscosity in the momentum equation is needed for numerical stability, as well as to arrest the direct cascade of enstrophy at grid scales. However, a viscous momentum closure tends to over-dissipate eddy kinetic energy. To return excessively dissipated energy to the system, the viscous closure is equipped with what is called dynamic kinetic energy backscatter. The amplitude of backscatter is based on the amount of unresolved kinetic energy (UKE). This energy is tracked through space and time via a prognostic equation. Our study proposes to add advection of UKE by the resolved flow to that equation to explicitly consider the effects of nonlocality on the subgrid energy budget. UKE can consequently be advected by the resolved flow before it is reinjected via backscatter. Furthermore, we suggest incorporating a stochastic element into the UKE equation to account for missing small-scale variability, which is not present in the purely deterministic approach. The implementations are tested on two intermediate complexity setups of the global ocean model FESOM2: an idealized channel setup and a double-gyre setup. The impacts of these additional terms are analyzed, highlighting increased eddy activity and improved flow characteristics when advection and carefully tuned, stochastic sources are incorporated into the UKE budget. Additionally, we provide diagnostics to gain further insights into the effects of scale separation between the viscous dissipation operator and the backscatter operator responsible for the energy injection. Oceanic swirls or "eddies" have a typical size of 10-100 km, which is close to the smallest scales that global ocean models commonly resolve. For physical and numerical reasons, these models require the addition of artificial terms that influence the flow near its smallest scales. Common approaches have the drawback of introducing systematic loss of kinetic energy contained in the eddies, which leads to errors that also affect the oceanic circulation on global scales. In our research, we compensate for this error by returning some of the missing energy back into the simulation, using a so-called kinetic energy backscatter scheme. In this work, we continue the development of an already existing and successful backscatter scheme, adding certain improvements to the way energy is budgeted and returned to the flow: we ensure that the local energy budget is attached to each fluid parcel as it is transported by the large-scale flow, and we also add a random forcing term that mimics unknown sources of such energy to bring its statistical properties closer to reality. We demonstrate that these modifications effectively improve the characteristics of the simulated flow. Extension of the subgrid energy equation of the kinetic energy backscatter parameterization by adding advection and a stochastic term Both additional terms improve several flow characteristics in two idealized test cases, a channel and a double-gyre Scale analysis reveals the necessity of sufficient scale separation between viscous energy dissipation and energy injection via backscatter. Key Points: - Extension of the subgrid energy equation of the kinetic energy backscatter parameterization by adding advection and a stochastic term - Both additional terms improve several flow characteristics in two idealized test cases, a channel and a double-gyre - Scale analysis reveals the necessity of sufficient scale separation between viscous energy dissipation and energy injection via backscatter
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...