GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-09-13
    Description: Decadal and bi-decadal climate responses to tropical strong volcanic eruptions (SVEs) are inspected in an ensemble simulation covering the last millennium based on the Max Planck Institute—Earth system model. An unprecedentedly large collection of pre-industrial SVEs (up to 45) producing a peak annual-average top-of-atmosphere radiative perturbation larger than −1.5 Wm−2 is investigated by composite analysis. Post-eruption oceanic and atmospheric anomalies coherently describe a fluctuation in the coupled ocean–atmosphere system with an average length of 20–25 years. The study provides a new physically consistent theoretical framework to interpret decadal Northern Hemisphere (NH) regional winter climates variability during the last millennium. The fluctuation particularly involves interactions between the Atlantic meridional overturning circulation and the North Atlantic gyre circulation closely linked to the state of the winter North Atlantic Oscillation. It is characterized by major distinctive details. Among them, the most prominent are: (a) a strong signal amplification in the Arctic region which allows for a sustained strengthened teleconnection between the North Pacific and the North Atlantic during the first post-eruption decade and which entails important implications from oceanic heat transport and from post-eruption sea ice dynamics, and (b) an anomalous surface winter warming emerging over the Scandinavian/Western Russian region around 10–12 years after a major eruption. The simulated long-term climate response to SVEs depends, to some extent, on background conditions. Consequently, ensemble simulations spanning different phases of background multidecadal and longer climate variability are necessary to constrain the range of possible post-eruption decadal evolution of NH regional winter climates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-07-27
    Description: Extremely large volcanic eruptions have been linked to global climate change, biotic turnover, and, for the Younger Toba Tuff (YTT) eruption 74,000 years ago, near-extinction of modern humans. One of the largest uncertainties of the climate effects involves evolution and growth of aerosol particles. A huge atmospheric concentration of sulfate causes higher collision rates, larger particle sizes, and rapid fall out, which in turn greatly affects radiative feedbacks. We address this key process by incorporating the effects of aerosol microphysical processes into an Earth System Model. The temperature response is shorter (9–10 years) and three times weaker (−3.5 K at maximum globally) than estimated before, although cooling could still have reached −12 K in some midlatitude continental regions after one year. The smaller response, plus its geographic patchiness, suggests that most biota may have escaped threshold extinction pressures from the eruption.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Geological Society Publishing
    In:  In: Volcanic Degassing. , ed. by Oppenheimer, C., Pyle, D. M. and Barclay, J. Special Publications Geological Society London, 213 . Geological Society Publishing, London, pp. 307-328.
    Publication Date: 2020-04-01
    Description: We estimated the volatile emissions of the 12 900 years BP eruption of Laacher See volcano (Germany), using a modified petrological method. Glass inclusions in phenocrysts and matrix glasses sampled over the Laacher See tephra profile were analysed by synchrotron X-ray fluorescence microprobe and electron microprobe to obtain the emitted masses of halogens, sulphur, and water. These data were used to initialize the numerical plume model ATHAM in order to investigate the fate of volcanic gases in the plume, and to estimate volatile masses injected into the stratosphere. The scavenging efficiency of each volatile component depends on its interactions with both liquid water and ice. We found a scavenging efficiency of c.5% for the sulphur species, and of only c.30% for hydrogen halides, despite their high water solubility. Our simulations showed that the greatest fraction of hydrometeors freeze to ice, due to the fast plume rise and great height of the eruption column. For the dry atmospheric conditions of the Laacher See eruption, the amount of liquid water was not sufficient to completely scavenge HCl and HBr, so that a large proportion could reach the stratosphere.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    WMO
    In:  In: Report of the 2006 Assessment of the Scientific Assessment Panel : SCIENTIFIC ASSESSMENT OF OZONE DEPLETION: 2006 - Pursuant to Article 6 of the Montreal Protocol on Substances that Deplete the Ozone Layer. World Meteorological Organization Global Ozone Research and Monitoring Project, 50 . WMO, pp. 1-53.
    Publication Date: 2012-09-07
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Volcanology and Geothermal Research, 115 (3-4). pp. 511-528.
    Publication Date: 2017-07-20
    Description: We compiled a global data set of volcanic degassing during both explosive and quiescent volcanic events. The data set comprises estimates of gas emissions of volcanoes from Europe (e.g. Etna), Asia (e.g. Merapi), the Americas (e.g. Fuego), Africa (e.g. Erta Ale) and ocean islands (e.g. Kilauea) over the past 100 yr. The set includes 50 monitored volcanoes and ∼310 extrapolated explosively erupting volcanoes. Among the ∼360 volcanoes, 75% are located in the Northern and 25% in the Southern Hemisphere. We have estimated the total annual global volcanic sulfur emission into the atmosphere to be on the order of 7.5–10.5×1012 g/yr S (here as SO2), amounting to 10–15% of the annual anthropogenic sulfur output (∼70×1012 g/yr S during the decade 1981–1990) and 7.5–10.5% of the total global sulfur emission (e.g. biomass burning, anthropogenic, dimethylsulfide) with ∼100×1012 g/yr S. The estimates of other volcanic gases emitted (e.g. H2S, HCl) are based on the assumption that the different gas components emitted by a volcano are in equilibrium with each other. Accordingly, the molar ratios of the gas species in high-temperature fumaroles are similar to molar ratios equilibrated at depth where the gas separates from the magma. Thus, we can use the directly measured SO2 fluxes and known molar ratios (e.g. H2S/SO2) for a semi-quantitative estimate of other gas components emitted (e.g. H2S). The total annual emission of HCl is 1.2–170×1012 g/yr, that of H2S 1.5–37.1×1012 g/yr, of HF 0.7–8.6×1012 g/yr, of HBr 2.6–43.2×109 g/yr, and of OCS 9.4×107–3.2×1011 g/yr. We estimate an emission of 1.3×107–4.4×1010 g/yr for CS2.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...