GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-07-24
    Description: The 11-year solar cycles in ozone and temperature are examined using new simulations of coupled chemistry climate models. The results show a secondary maximum in stratospheric tropical ozone, in agreement with satellite observations and in contrast with most previously published simulations. The mean model response varies by up to about 2.5% in ozone and 0.8 K in temperature during a typical solar cycle, at the lower end of the observed ranges of peak responses. Neither the upper atmospheric effects of energetic particles nor the presence of the quasi biennial oscillation is necessary to simulate the lower stratospheric response in the observed low latitude ozone concentration. Comparisons are also made between model simulations and observed total column ozone. As in previous studies, the model simulations agree well with observations. For those models which cover the full temporal range 1960–2005, the ozone solar signal below 50 hPa changes substantially from the first two solar cycles to the last two solar cycles. Further investigation suggests that this difference is due to an aliasing between the sea surface temperatures and the solar cycle during the first part of the period. The relationship between these results and the overall structure in the tropical solar ozone response is discussed. Further understanding of solar processes requires improvement in the observations of the vertically varying and column integrated ozone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-01-19
    Description: The goal of the Chemistry-Climate Model Validation (CCMVal) activity is to improve understanding of chemistry-climate models (CCMs) through process-oriented evaluation and to provide reliable projections of stratospheric ozone and its impact on climate. An appreciation of the details of model formulations is essential for understanding how models respond to the changing external forcings of greenhouse gases and ozone-depleting substances, and hence for understanding the ozone and climate forecasts produced by the models participating in this activity. Here we introduce and review the models used for the second round (CCMVal-2) of this intercomparison, regarding the implementation of chemical, transport, radiative, and dynamical processes in these models. In particular, we review the advantages and problems associated with approaches used to model processes of relevance to stratospheric dynamics and chemistry. Furthermore, we state the definitions of the reference simulations performed, and describe the forcing data used in these simulations. We identify some developments in chemistry-climate modeling that make models more physically based or more comprehensive, including the introduction of an interactive ocean, online photolysis, troposphere-stratosphere chemistry, and non-orographic gravity-wave deposition as linked to tropospheric convection. The relatively new developments indicate that stratospheric CCM modeling is becoming more consistent with our physically based understanding of the atmosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  [Poster] In: EGU General Assembly, 07.04, Vienna, Austria .
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2023-01-03
    Description: ICON-A is the new icosahedral nonhydrostatic (ICON) atmospheric general circulation model in a configuration using the Max Planck Institute physics package, which originates from the ECHAM6 general circulation model, and has been adapted to account for the changed dynamical core framework. The coupling scheme between dynamics and physics employs a sequential updating by dynamics and physics, and a fixed sequence of the physical processes similar to ECHAM6. To allow a meaningful initial comparison between ICON-A and the established ECHAM6-LR model, a setup with similar, low resolution in terms of number of grid points and levels is chosen. The ICON-A model is tuned on the base of the Atmospheric Model Intercomparison Project (AMIP) experiment aiming primarily at a well balanced top-of atmosphere energy budget to make the model suitable for coupled climate and Earth system modeling. The tuning addresses first the moisture and cloud distribution to achieve the top-of-atmosphere energy balance, followed by the tuning of the parameterized dynamic drag aiming at reduced wind errors in the troposphere. The resulting version of ICON-A has overall biases, which are comparable to those of ECHAM6. Problematic specific biases remain in the vertical distribution of clouds and in the stratospheric circulation, where the winter vortices are too weak. Biases in precipitable water and tropospheric temperature are, however, reduced compared to the ECHAM6. ICON-A will serve as the basis of further development and as the atmosphere component to the coupled model, ICON-Earth system model (ESM). Key Points: - Physics package for climate modeling is coupled to a nonhydrostatic dynamical core - Tuning in five steps to obtain a balanced net radiation at top of atmosphere - Overall biases of ICON-A are comparable to ECHAM6.3, but circulation biases remain due to problems with parameterized drag
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-01-03
    Description: We evaluate the new icosahedral nonhydrostatic atmospheric (ICON-A) general circulation model of the Max Planck Institute for Meteorology that is flexible to be run at grid spacings from a few tens of meters to hundreds of kilometers. A simulation with ICON-A at a low resolution (160 km) is compared to a not-tuned fourfold higher-resolution simulation (40 km). Simulations using the last release of the ECHAM climate model (ECHAM6.3) are also presented at two different resolutions. The ICON-A simulations provide a compelling representation of the climate and its variability. The climate of the low-resolution ICON-A is even slightly better than that of ECHAM6.3. Improvements are obtained in aspects that are sensitive to the representation of orography, including the representation of cloud fields over eastern-boundary currents, the latitudinal distribution of cloud top heights, and the spatial distribution of convection over the Indian Ocean and the Maritime Continent. Precipitation over land is enhanced, in particular at high-resolution ICON-A. The response of precipitation to El Niño sea surface temperature variability is close to observations, particularly over the eastern Indian Ocean. Some parameterization changes lead to improvements, for example, with respect to rain intensities and the representation of equatorial waves, but also imply a warmer troposphere, which we suggest leads to an unrealistic poleward mass shift. Many biases familiar to ECHAM6.3 are also evident in ICON-A, namely, a too zonal SPCZ, an inadequate representation of north hemispheric blocking, and a relatively poor representation of tropical intraseasonal variability. Key Points: - Article presents evaluation of atmosphere component of new ICON Earth system model - The new MPI atmospheric ICON-A model partly outperforms ECHAM6.3 - ICON-A is flexible to be run at grid spacings from a few tens of meters to hundreds of kilometers
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...