GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-09-22
    Description: Simulating sea ice drift and deformation in the Arctic Ocean is still a challenge because of the multiscale interaction of sea ice floes that compose the Arctic Sea ice cover. The Sea Ice Rheology Experiment (SIREx) is a model intercomparison project of the Forum of Arctic Modeling and Observational Synthesis (FAMOS). In SIREx, skill metrics are designed to evaluate different recently suggested approaches for modeling linear kinematic features (LKFs) to provide guidance for modeling small‐scale deformation. These LKFs are narrow bands of localized deformation that can be observed in satellite images and also form in high resolution sea ice simulations. In this contribution, spatial and temporal properties of LKFs are assessed in 36 simulations of state‐of‐the‐art sea ice models and compared to deformation features derived from the RADARSAT Geophysical Processor System. All simulations produce LKFs, but only very few models realistically simulate at least some statistics of LKF properties such as densities, lengths, or growth rates. All SIREx models overestimate the angle of fracture between conjugate pairs of LKFs and LKF lifetimes pointing to inaccurate model physics. The temporal and spatial resolution of a simulation and the spatial resolution of atmospheric boundary condition affect simulated LKFs as much as the model's sea ice rheology and numerics. Only in very high resolution simulations (≤2 km) the concentration and thickness anomalies along LKFs are large enough to affect air‐ice‐ocean interaction processes.
    Description: Plain Language Summary: Winds and ocean currents continuously move and deform the sea ice cover of the Arctic Ocean. The deformation eventually breaks an initially closed ice cover into many individual floes, piles up floes, and creates open water. The distribution of ice floes and open water between them is important for climate research, because ice reflects more light and energy back to the atmosphere than open water, so that less ice and more open water leads to warmer oceans. Current climate models cannot simulate sea ice as individual floes. Instead, a variety of methods is used to represent the movement and deformation of the sea ice cover. The Sea Ice Rheology Experiment (SIREx) compares these different methods and assesses the deformation of sea ice in 36 numerical simulations. We identify and track deformation features in the ice cover, which are distinct narrow areas where the ice is breaking or piling up. Comparing specific spatial and temporal properties of these features, for example, the different amounts of fractured ice in specific regions, or the duration of individual deformation events, to satellite observations provides information about the realism of the simulations. From this comparison, we can learn how to improve sea ice models for more realistic simulations of sea ice deformation.
    Description: Key Points: All models simulate linear kinematic features (LKFs), but none accurately reproduces all LKF statistics. Resolved LKFs are affected strongest by spatial and temporal resolution of model grid and atmospheric forcing and rheology. Accurate scaling of deformation rates is a proxy only for realistic LKF numbers but not for any other LKF static.
    Description: DOE
    Description: HYCOM NOPP
    Description: Innovation Fund Denmark and the Horizon 2020 Framework Programme of the European Union
    Description: National centre for Climate Research, SALIENSEAS, ERA4CS
    Description: German Helmholtz Climate Initiative REKLIM (Regional Climate Change)
    Description: Gouvernement du Canada, Natural Sciences and Engineering Research Council of Canada (NSERC) http://dx.doi.org/10.13039/501100000038
    Description: Environment and Climate Change Canada Grants & Contributions program
    Description: Office of Naval Research Arctic and Global Prediction program
    Description: U.S. Department of Energy Regional and Global Model Analysis program
    Description: National Science Foundation Arctic System Science program
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: https://zenodo.org/communities/sirex
    Keywords: ddc:550.285
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-24
    Description: Substantial changes have occurred in the Arctic Ocean in the last decades. Not only sea ice has retreated significantly, but also the ocean at middepth showed a warming tendency. By using simulations we identified a mechanism that intensifies the upward trend in ocean heat supply to the Arctic Ocean through Fram Strait. The reduction in sea ice export through Fram Strait induced by Arctic sea ice decline increases the salinity in the Greenland Sea, which lowers the sea surface height and strengthens the cyclonic gyre circulation in the Nordic Seas. The Atlantic Water volume transport to the Nordic Seas and Arctic Ocean is consequently strengthened. This enhances the warming trend of the Arctic Atlantic Water layer, potentially contributing to the Arctic “Atlantification.” Our study suggests that the Nordic Seas can play the role of a switchyard to influence the heat budget of the Arctic Ocean.
    Keywords: 551.46 ; Arctic Ocean ; Atlantic Water ; sea ice decline ; Nordic Seas ; Greenland Sea ; Atlantification
    Language: English
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-04-01
    Description: The transient climate response (TCR) is 20% higher in the Alfred Wegener Institute Climate Model (AWI‐CM) compared to the Max Planck Institute Earth System Model (MPI‐ESM) whereas the equilibrium climate sensitivity (ECS) is by up to 10% higher in AWI‐CM. These results are largely independent of the two considered model resolutions for each model. The two coupled CMIP6 models share the same atmosphere‐land component ECHAM6.3 developed at the Max Planck Institute for Meteorology (MPI‐M). However, ECHAM6.3 is coupled to two different ocean models, namely the MPIOM sea ice‐ocean model developed at MPI‐M and the FESOM sea ice‐ocean model developed at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI). A reason for the different TCR is related to ocean heat uptake in response to greenhouse gas forcing. Specifically, AWI‐CM simulations show stronger surface heating than MPI‐ESM simulations while the latter accumulate more heat in the deeper ocean. The vertically integrated ocean heat content is increasing slower in AWI‐CM model configurations compared to MPI‐ESM model configurations in the high latitudes. Weaker vertical mixing in AWI‐CM model configurations compared to MPI‐ESM model configurations seems to be key for these differences. The strongest difference in vertical ocean mixing occurs inside the Weddell and Ross Gyres and the northern North Atlantic. Over the North Atlantic, these differences materialize in a lack of a warming hole in AWI‐CM model configurations and the presence of a warming hole in MPI‐ESM model configurations. All these differences occur largely independent of the considered model resolutions.
    Description: Plain Language Summary: The transient climate response (TCR) describes how strongly near‐surface temperatures warm in response to gradually increasing greenhouse‐gas levels. Here we investigate the role of the ocean which takes up heat and thereby delays the surface warming. Two models of the Coupled Model Intercomparison Project Phase 6 (CMIP6), the Alfred Wegener Institute Climate Model (AWI‐CM) and the Max Planck Institute Earth System Model (MPI‐ESM), which use the same atmosphere model but different ocean models are selected for this study. In AWI‐CM the upper ocean layers heat faster than in MPI‐ESM, while the opposite is true for the deep ocean. As a consequence, the TCR is 20% stronger in AWI‐CM compared to MPI‐ESM. We find that weaker vertical ocean mixing in AWI‐CM compared to MPI‐ESM, especially over the northern North Atlantic and the Weddell and Ross Gyres, is key for these differences. Our findings corroborate the importance of realistic ocean mixing in climate models when it comes to getting the strength and timing of climate change right.
    Description: Key Points: The transient climate response in two coupled models with the same atmosphere but different ocean components differs by 20%. The upper (deeper) ocean heats faster (slower) in AWI‐CM compared to MPI‐ESM, independent of model resolution. Vertical mixing in the northern North Atlantic and the Weddell and Ross Gyres appears to be key for these differences.
    Description: Bundesministerium für Bildung und Forschung (BMBF) http://dx.doi.org/10.13039/501100002347
    Description: German Climate Computing Centre (DKRZ)
    Description: Federal Ministry of Education and Research of Germany
    Description: Helmholtz Association http://dx.doi.org/10.13039/501100009318
    Description: https://esgf-data.dkrz.de/projects/cmip6-dkrz/
    Keywords: ddc:551.6
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-15
    Description: In this study we demonstrate the potential of a kinetic energy backscatter scheme for use in global ocean simulations. Ocean models commonly employ (bi)harmonic eddy viscosities causing excessive dissipation of kinetic energy in eddy-permitting simulations. Overdissipation not only affects the smallest resolved scales but also the generation of eddies through baroclinic instabilities, impacting the entire wave number spectrum. The backscatter scheme returns part of this overdissipated energy back into the resolved flow. We employ backscatter in the FESOM2 multiresolution ocean model with a quasi-uniform 1/4° mesh. In multidecadal ocean simulations, backscatter increases eddy activity by a factor 2 or more, moving the simulation closer to observational estimates of sea surface height variability. Moreover, mean sea surface height, temperature, and salinity biases are reduced. This amounts to a globally averaged bias reduction of around 10% for each field, which is even larger in the Antarctic Circumpolar Current. However, in some regions such as the coastal Kuroshio, backscatter leads to a slight overenergizing of the flow and, in the Antarctic, to an unrealistic reduction of sea ice. Some of the bias increases can be reduced by a retuning of the model, and we suggest related adjustments to the backscatter scheme. The backscatter simulation is about 2.5 times as expensive as a simulation without backscatter. Most of the increased cost is due to a halving of the time step to accommodate higher simulated velocities.
    Keywords: 551.46 ; ocean kinetic energy backscatter ; subgrid eddy parametrization ; inverse energy cascade ; viscosity closure ; eddy-permitting resolution
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-12
    Description: Simulating Arctic Ocean mesoscale eddies in ocean circulation models presents a great challenge because of their small size. This study employs an unstructured-mesh ocean-sea ice model to conduct a decadal-scale global simulation with a 1-km Arctic. It provides a basinwide overview of Arctic eddy energetics. Increasing model resolution from 4 to 1 km increases Arctic eddy kinetic energy (EKE) and total kinetic energy (TKE) by about 40% and 15%, respectively. EKE is the highest along main currents over topography slopes, where strong conversion from available potential energy to EKE takes place. It is high in halocline with a maximum typically centered in the depth range of 70–110 m, and in the Atlantic Water layer of the Eurasian Basin as well. The seasonal variability of EKE along the continental slopes of southern Canada and eastern Eurasian basins is similar, stronger in fall and weaker in spring.
    Keywords: 551.46 ; Arctic Ocean ; mesoscale eddies ; eddy kinetic energy ; baroclinic instability
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-06-17
    Description: We examine the historical evolution and projected changes in the hydrography of the deep basin of the Arctic Ocean in 23 climate models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6). The comparison between historical simulations and observational climatology shows that the simulated Atlantic Water (AW) layer is too deep and thick in the majority of models, including the multi‐model mean (MMM). Moreover, the halocline is too fresh in the MMM. Overall our findings indicate that there is no obvious improvement in the representation of the Arctic hydrography in CMIP6 compared to CMIP5. The climate change projections reveal that the sub‐Arctic seas are outstanding warming hotspots, causing a strong warming trend in the Arctic AW layer. The MMM temperature increase averaged over the upper 700 m at the end of the 21st century is about 40% and 60% higher in the Arctic Ocean than the global mean in the SSP245 and SSP585 scenarios, respectively. Salinity in the upper few hundred meters is projected to decrease in the Arctic deep basin in the MMM. However, the spread in projected salinity changes is large and the tendency toward stronger halocline in the MMM is not simulated by all the models. The identified biases and projection uncertainties call for a concerted effort for major improvements of coupled climate models.
    Description: Plain Language Summary: Coupled climate models are crucial tools for understanding and projecting climate change, especially for the Arctic where the climate is changing at unprecedented rates. A cold fresh layer of water (aka halocline) has been protecting sea‐ice at the surface from the warm layer of water (aka Atlantic Water layer) which flows underneath and could potentially accelerate sea ice melting from below. Climate change disturbs this vertical structure by changing the temperature and salinity of the Arctic Ocean (in a process known as Atlantification and Pacification) which may lead to additional sea ice basal melting and accelerate sea ice decline. We examined the simulated temperature and salinity in the Arctic Ocean deep basin in state‐of‐the‐art climate model simulations which provided the basis for the IPCC Assessment Report. We found that although there are persistent inaccuracies in the representation of Arctic temperature and salinity, the Arctic Ocean below 100 m is subject to much stronger warming than the average global ocean. On the other hand, the upper Arctic Ocean salinity is projected to decrease, which on average may strengthen the isolation of sea ice from Atlantic Water heat in the Arctic deep basin area.
    Description: Key Points: A too deep and thick Arctic Atlantic Water layer continues to be a major issue in contemporary climate models contributing to the CMIP6. The Arctic Ocean below the halocline is subject to much stronger warming than the global mean during the 21st century. The multi‐model mean upper ocean salinity is projected to decrease in the future but with high uncertainty.
    Description: European union's Horizon 2020 research and innovation programme
    Description: German Helmholtz climate initiative REKLIM
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: https://esgf-data.dkrz.de/projects/esgf-dkrz/
    Description: http://psc.apl.washington.edu/nonwp_projects/PHC/Data3.html
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...