GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (49)
Document type
Source
Keywords
Publisher
Years
  • 1
    Publication Date: 2023-06-13
    Keywords: Benthocosm_A1; Benthocosm_A2; Benthocosm_B1; Benthocosm_B2; Benthocosm_C1; Benthocosm_C2; Benthocosm_D1; Benthocosm_D2; Benthocosm_E1; Benthocosm_E2; Benthocosm_F1; Benthocosm_F2; BIOACID; Biological Impacts of Ocean Acidification; DATE/TIME; Event label; Experiment; Experimental treatment; Kiel Fjord; MESO; Mesocosm experiment; Reproductive allocation ratio; Sample code/label; Species
    Type: Dataset
    Format: text/tab-separated-values, 282 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-06-13
    Description: Ocean warming and acidification may substantially affect the photophysiological performance of keystone species such as Fucus vesiculosus (Phaeophyceae) in shallow coastal waters. In four consecutive benthic mesocosm experiments (Kiel Outdoor Benthocosm, Kiel, Germany, 54°20'N; 10°09'E), we compared the photophysiological performance (i.e., oxygen production, in vivo chlorophyll a fluorescence, energy dissipation pathways and chlorophyll concentration) of Baltic Sea Fucus under the single and combined impact of elevated seawater temperature (Δ + 5°C) and pCO2 (1100 ppm). Fucus specimens were sampled, in each season (spring: April 2, 2013; summer: July 2, 2013; autumn: 8 October; winter: January 14, 2014) from a depth of 0.2–1 m in the Kiel Fjord (Bülk), western Baltic Sea, Germany (54°27'N; 10°11,5'E). Photosynthetic performance was measured with two different methods, one based on in vivo chlorophyll a fluorescence measurements of photosystem II (PSII), the other one based on oxygen production. For each experiment and treatment, three Fucus specimens 15–25 cm long with 91 ± 30 total apices and apparently equal vigor were chosen, each individually growing on a stone (10–15 cm in diameter) from a single holdfast. For details see material and methods in Graiff et al. 2021. Photosynthesis was highest in spring/early summer when water temperature and solar irradiance increases naturally, and was lowest in winter (December to January/February). Temperature had a stronger effect than pCO2 on photosynthetic performance of Fucus in all seasons. Photophysiological responses were generally positive during the cooler spring months, but strongly negatively affected during summer (due to a marine heat-wave). Especially, future summer temperatures exceeded the thermal tolerance threshold of western Baltic Sea Fucus and had a deleterious impact overall. Potential benefits of the combination of future ocean warming and increased pCO2 over most of the year for Fucus photophysiological performance are suggested by our study, but not during summer peak temperatures.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; chlorophyll fluorescence; DATE/TIME; Fjord; Kiel Fjord; Maximal electron transport rate, relative; mesocosm; Photochemical quantum yield; Photosynthesis; Season; Time in days
    Type: Dataset
    Format: text/tab-separated-values, 146 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Mielck, Finn; Bartsch, Inka; Hass, H Christian; Wölfl, Anne-Cathrin; Bürk, Dietmar; Betzler, Christian (2014): Predicting spatial kelp abundance in shallow coastal waters using the acoustic ground discrimination system RoxAnn. Estuarine, Coastal and Shelf Science, 143, 1-11, https://doi.org/10.1016/j.ecss.2014.03.016
    Publication Date: 2023-06-13
    Description: Kelp forests represent a major habitat type in coastal waters worldwide and their structure and distribution is predicted to change due to global warming. Despite their ecological and economical importance, there is still a lack of reliable spatial information on their abundance and distribution. In recent years, various hydroacoustic mapping techniques for sublittoral environments evolved. However, in turbid coastal waters, such as off the island of Helgoland (Germany, North Sea), the kelp vegetation is present in shallow water depths normally excluded from hydroacoustic surveys. In this study, single beam survey data consisting of the two seafloor parameters roughness and hardness were obtained with RoxAnn from water depth between 2 and 18 m. Our primary aim was to reliably detect the kelp forest habitat with different densities and distinguish it from other vegetated zones. Five habitat classes were identified using underwater-video and were applied for classification of acoustic signatures. Subsequently, spatial prediction maps were produced via two classification approaches: Linear discriminant analysis (LDA) and manual classification routine (MC). LDA was able to distinguish dense kelp forest from other habitats (i.e. mixed seaweed vegetation, sand, and barren bedrock), but no variances in kelp density. In contrast, MC also provided information on medium dense kelp distribution which is characterized by intermediate roughness and hardness values evoked by reduced kelp abundances. The prediction maps reach accordance levels of 62% (LDA) and 68% (MC). The presence of vegetation (kelp and mixed seaweed vegetation) was determined with higher prediction abilities of 75% (LDA) and 76% (MC). Since the different habitat classes reveal acoustic signatures that strongly overlap, the manual classification method was more appropriate for separating different kelp forest densities and low-lying vegetation. It became evident that the occurrence of kelp in this area is not simply linked to water depth. Moreover, this study shows that the two seafloor parameters collected with RoxAnn are suitable indicators for the discrimination of different densely vegetated seafloor habitats in shallow environments.
    Keywords: AWI_Coast; Coastal Ecology @ AWI
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Graiff, Angelika; Bartsch, Inka; Ruth, Wolfgang; Wahl, Martin; Karsten, Ulf (2015): Season Exerts Differential Effects of Ocean Acidification and Warming on Growth and Carbon Metabolism of the Seaweed Fucus vesiculosus in the Western Baltic Sea. Frontiers in Marine Science, 2, https://doi.org/10.3389/fmars.2015.00112
    Publication Date: 2023-06-13
    Description: Warming and acidification of the oceans as a consequence of increasing CO2-concentrations occur at large scales. Numerous studies have shown the impact of single stressors on individual species. However, studies on the combined effect of multiple stressors on a multi-species assemblage, which is ecologically much more realistic and relevant, are still scarce. Therefore, we orthogonally crossed the two factors warming and acidification in mesocosm experiments and studied their single and combined impact on the brown alga Fucus vesiculosus associated with its natural community (epiphytes and mesograzers) in the Baltic Sea in all seasons (from April 2013 to April 2014). We superimposed our treatment factors onto the natural fluctuations of all environmental variables present in the Benthocosms in so-called delta-treatments. Thereby we compared the physiological responses of F. vesiculosus (growth and metabolites) to the single and combined effects of natural Kiel Fjord temperatures and pCO2 conditions with a 5 °C temperature increase and/or pCO2 increase treatment (1100 ppm in the headspace above the mesocosms). Responses were also related to the factor photoperiod which changes over the course of the year. Our results demonstrate complex seasonal pattern. Elevated pCO2 positively affected growth of F. vesiculosus alone and/or interactively with warming. The response direction (additive, synergistic or antagonistic), however, depended on season and daylength. The effects were most obvious when plants were actively growing during spring and early summer. Our study revealed for the first time that it is crucial to always consider the impact of variable environmental conditions throughout all seasons. In summary, our study indicates that in future F. vesiculosus will be more affected by detrimental summer heat-waves than by ocean acidification although the latter consequently enhances growth throughout the year. The mainly negative influence of rising temperatures on the physiology of this keystone macroalga may alter and/or hamper its ecological functions in the shallow coastal ecosystem of the Baltic Sea.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Graiff, Angelika; Liesner, Daniel; Karsten, Ulf; Bartsch, Inka (2015): Temperature tolerance of western Baltic Sea Fucus vesiculosus – growth, photosynthesis and survival. Journal of Experimental Marine Biology and Ecology, 471, 8-16, https://doi.org/10.1016/j.jembe.2015.05.009
    Publication Date: 2023-06-13
    Description: Fucus vesiculosus L. (Phaeophyceae) is the most abundant and hence ecologically most important primary producer, carbon sink and habitat provider in the western Baltic Sea. All F. vesiculosus L. specimens were collected on 23 April 2014 from a depth of 0.2-1 m in the non-tidal Kiel Fjord, western Baltic Sea (54°27'N; 10°12'E), where this species forms dense and almost monospecific stands on stones. After sampling the algal thalli were stored in a refrigerator box with water from the sampling site, transported to Bremerhaven and stored at 10 °C for one day in filtered seawater. Experiments were conducted with vegetative apical tips (6.7±0.5 cm length), the actively growing region of F. vesiculosus, which were randomly selected and cut from 144 different individuals prior to the experiments. These tips were acclimated to laboratory conditions for three days in filtered seawater at 10 °C before the start of the experiment. Furthermore, 30 additional vegetative apices were freeze-dried to document the initial biochemical status of F. vesiculosus in its native habitat. A temperature gradient was installed in a walk-in constant cooling chamber (15 °C) in nine water baths (5, 10, 15, 20, 24, 26, 27, 28 and 29 °C ± 0.1 °C) which were tempered by thermostats (5, 10 and 15 °C: Huber Variostat CC + Pilot ONE, Peter Huber Kältemaschinen GmbH, Offenburg, Germany; 20 and 28 °C: Haake DC3, Thermo Fisher Scientific Inc., Waltham, USA; 24, 26, 27 and 29 °C: Haake DC10). Every temperature treatment consisted of four 2 L glass beakers (n = 4). In each beaker four F. vesiculosus apices were grown in 2 µm-filtered North Sea water diluted with demineralized water in a ratio of 1:1 and enriched with nutrients after Provasoli (1968; 1/10 enrichment), leading to a salinity of about 15.6 which equaled habitat conditions. The algae were exposed to an irradiance of 130 µmol photons m-2 s-1 ±10 % (Powerstar HGI-TS 150 W, OSRAM GmbH, Bad Homburg, Germany) measured at the top of the beaker under a 16:8 h L:D cycle. The media in the beakers was changed every third or fourth day and aerated with artificial air containing 380 ppm CO2 (gas mixing device; HTK Hamburg GmbH, Hamburg, Germany). Before the experiment, the algae were acclimated to the final temperatures in steps of 5 °C for 2 days each, beginning at 10 °C. After 21 days exposure time, three out of four samples per replicate were freeze-dried for further biochemical analyses, and afterwards the thermostats were turned off to reduce the temperature to 16±0.4 °C for another 10 days permitting growth under post-culture conditions.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 6 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Graiff, Angelika; Dankworth, Marie; Wahl, Martin; Karsten, Ulf; Bartsch, Inka (2017): Seasonal variations of Fucus vesiculosus fertility under ocean acidification and warming in the western Baltic Sea. Botanica Marina, 60(3), https://doi.org/10.1515/bot-2016-0081
    Publication Date: 2023-06-13
    Description: Ocean warming and acidification may substantially affect the reproduction of keystone species such as Fucus vesiculosus (Phaeophyceae). In four consecutive benthic mesocosm experiments, we compared the reproductive biology and quantified the temporal development of Baltic Sea Fucus fertility under the single and combined impact of elevated seawater temperature and pCO2 (1100 ppm). In an additional experiment, we investigated the impact of temperature (0-25°C) on the maturation of North Sea F. vesiculosus receptacles. A marked seasonal reproductive cycle of F. vesiculosus became apparent in the course of 1 year. The first appearance of receptacles on vegetative apices and the further development of immature receptacles of F. vesiculosus in autumn were unaffected by warming or elevated pCO2. During winter, elevated pCO2 in both ambient and warmed temperatures increased the proportion of mature receptacles significantly. In spring, warming and, to a lesser extent, elevated pCO2 accelerated the maturation of receptacles and advanced the release of gametes by up to 2 weeks. Likewise, in the laboratory, maturation and gamete release were accelerated at 15-25°C relative to colder temperatures. In summary, elevated pCO2 and/or warming do not influence receptacle appearance in autumn, but do accelerate the maturation process during spring, resulting in earlier gamete release. Temperature and, to a much lesser extent, pCO2 affect the temporal development of Fucus fertility. Thus, rising temperatures will mainly shift or disturb the phenology of F. vesiculosus in spring and summer, which may alter and/or hamper its ecological functions in shallow coastal ecosystems of the Baltic Sea.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-06-13
    Description: To assess the thermal adaptation of microscopic stages of the kelp Laminaria digitata along latitudes, we conducted laboratory experiments on samples from six locations in the NE Atlantic (Spitsbergen (SPT), Tromsø (TRM), Bodø (BOD; all Norway), Helgoland (HLG; Germany), Roscoff (ROS) and Quiberon (QUI; both France)), spanning the species' entire distribution range. In experiment 1, we exposed gametophytes to (sub-) lethal high priming temperatures (20-25°C) for two weeks, followed by two weeks of recovery at 15°C, to observe gametophyte survival and sporophyte formation. In experiment 2, samples were subjected to (sub-) optimal low temperatures (0-15°C) for 21 days, to assess gametophyte survival, sporophyte formation and growth. During the experiments, samples were kept in 15 µmol photons/m²/s white light under a 16:8h light:dark cycle. Prior to the experiments, cultures were stored at 15°C in iron-free ½ Provasoli enriched seawater in 3-4 µmol photons/m²/s red light.
    Keywords: common garden experiment; gametogenesis; growth; kelp; Laboratory experiment; latitude; Local adaptation; North Atlantic; Reproduction; Survival; Temperature; upper survival temperature
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-06-13
    Description: Shallow coastal marine ecosystems are exposed to intensive warming events in the last decade, threatening keystone macroalgal species such as the bladder wrack (Fucus vesiculosus, Phaeophyceae) in the Baltic Sea. Herein, we experimentally tested in four consecutive benthic mesocosm experiments, if the single and combined impact of elevated seawater temperature (? + 5◦C) and pCO2 (1100 ppm) under natural irradiance conditions seasonally affected the photophysiological performance (i.e., oxygen production, in vivo chlorophyll a fluorescence, energy dissipation pathways and chlorophyll concentration) of Baltic Sea Fucus. Photosynthesis was highest in spring/early summer when water temperature and solar irradiance increases naturally, and was lowest in winter (December to January/February). Temperature had a stronger effect than pCO2 on photosynthetic performance of Fucus in all seasons. In contrast to the expectation that warmer winter conditions might be beneficial, elevated temperature conditions and sub-optimal low winter light conditions decreased photophysiological performance of Fucus. In summer, western Baltic Sea Fucus already lives close to its upper thermal tolerance limit and future warming of the Baltic Sea during summer may probably become deleterious for this species. However, our results indicate that over most of the year a combination of future ocean warming and increased pCO2 will have slightly positive effects for Fucus photophysiological performance.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; chlorophyll fluorescence; mesocosm; Photosynthesis
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Olischläger, Mark; Bartsch, Inka; Gutow, Lars; Wiencke, Christian (2013): Effects of ocean acidification on growth and physiology of Ulva lactuca (Chlorophyta) in a rockpool-scenario. Phycological Research, 61(3), 180-190, https://doi.org/10.1111/pre.12006
    Publication Date: 2023-06-13
    Description: Rising atmospheric CO2-concentrations will have severe consequences for a variety of biological processes. We investigated the responses of the green alga Ulva lactuca (Linnaeus) to rising CO2-concentrations in a rockpool scenario. U. lactuca was cultured under aeraton with air containing either preindustrial pCO2 (280µatm) or for the end of the 21st century predicted (700µatm) pCO2 for 31 days. We addressed the following question: Will elevated CO2-concentrations affect photosynthesis (net photosynthesis, rETR(max), Fv/Fm, pigment composition) and growth of U. lactuca in rockpools with limited water exchange? Two phases of the experiment were distinguished: In the initial phase (day 1-4) the Seawater Carbonate System (SWCS) of the culture medium could be adjusted to the selected atmospheric pCO2 condition by continuous aeration with target pCO2 values. In the second phase (day 4-31) the SWCS was largely determined by the metabolism of the growing U. lactuca biomass. In the initial phase, Fv/Fm and rETR(max) were only slightly elevated at high CO2-concentrations whereas growth was significantly enhanced. After 31 days the Chl a content of the thalli was significantly lower under future conditions and the photosynthesis of thalli grown under preindustrial conditions was not dependent on external carbonic anhydrase. Biomass increased significantly at high CO2-concentrations. At low CO2-concentrations most adult thalli disintegrated between day 14 and 21, whereas at high CO2-concentrations most thalli remained integer until day 31. Thallus disintegration at low CO2-concentrations was mirrored in a drastic decline in seawater DIC and HCO3-. Accordingly, the SWCS differed significantly between the treatments. Our results indicated a slight enhancement of photosynthetic performance and significantly elevated growth of U. lactuca at future CO2-concentrations. The accelerated thallus disintegration at high CO2-concentrations under conditions of limited water exchange indicates additional CO2 effects on the life cycle of U. lactuca when living in rockpools.
    Keywords: AWI_Coast; BIOACID; Biological Impacts of Ocean Acidification; Coastal Ecology @ AWI
    Type: Dataset
    Format: application/zip, 2.5 MBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-06-13
    Keywords: Alkalinity, total; Aragonite saturation state; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Carbonate ion; Carbon dioxide; Chlorophyll a; Chlorophyll b; Chlorophyta; Coast and continental shelf; Date; Dry mass; Growth/Morphology; Growth rate; Identification; Incubation duration; Laboratory experiment; Macroalgae; Maximal electron transport rate, relative; Maximum photochemical quantum yield of photosystem II; Net photosynthesis rate, oxygen; Net photosynthesis rate, oxygen, per chlorophyll a; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Plantae; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Replicate; Salinity; Single species; Species; Temperate; Temperature, water; Treatment; Ulva lactuca
    Type: Dataset
    Format: text/tab-separated-values, 1851 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...