GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-03-16
    Description: Communities of microscopic dinoflagellates are omnipresent in aquatic ecosystems. Consequently, their traits drive community processes with profound effects on global biogeochemistry. Species traits are, however, not necessarily static but respond to environmental changes in order to maintain fitness and may differ with cell size that scales physiological rates. Comprehending such trait characteristics is necessary for a mechanistic understanding of plankton community dynamics and resulting biogeochemical impacts. Here, we used information theory to analyze metatranscriptomes of micro- and nano-dinoflagellate communities in three ecosystems. Measures of gene expression variations were set as a proxy to determine conserved and plastic community traits and the environmental influence on trait changes. Using metabarcoding, we further investigated if communities with a more similar taxon composition also express more similar traits. Our results indicate that plastic community traits mainly arise from membrane vesicle associated processes in all the environments we investigated. A specific environmental influence on trait plasticity was observed to arise from nitrogen availability in both size classes. Species interactions also appeared to be responsible for trait plasticity in the smaller-sized dinoflagellates. Additionally, the smaller-sized dinoflagellate communities are characterized by the expression of a large pool of habitat specific genes despite being taxonomically more similar across the habitats, in contrast to the microplanktonic assemblages that adapted to their environments by changing species composition. Our data highlight the functional diversification on the gene level as a signature of smaller sized dinoflagellates, nitrogen availability and species interactions as drivers of trait plasticity, and traits most likely linked to fitness and community performance.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  EPIC3ICYMARE - International Conference for YOUNG Marine Researchers, 2019-09-24-2019-09-27
    Publication Date: 2019-10-01
    Description: The almost globally distributed, marine dinoflagellate genera Azadinium and Amphidoma (Amphidomataceae) produce a variety of lipophilic phycotoxins known as Azaspiracids (AZA). These toxins are accumulated mostly by filter-feeders like the blue mussel (Mytilus edulis) and may lead to the azaspiracid-shellfish-poisoning (AZP) syndrome in humans after consumption of contaminated seafood. With respect to the impacts on humans health, AZA-concentrations above the EU-regulatory limit (0.16 mg AZA Kg-1 mussel flesh) go along with closures of shellfish farms and are therefore a threat to the aquaculture industry, as well. Thus, there is a need for a rapid, sensitive and reliable detection and quantification of these microalgae and their toxigenic products. However, this is challenging, as the small-sized cells (12-16 µm) are hardly possible to be identified by traditional light microscopy. Even more challenging, only a few amphidomatacean species produce toxins, and toxigenic and non-toxigenic species can co-occur in the same area. In 2018, a seagoing expedition took place in the North Sea, the English Channel and Irish coastal waters, combining onboard light microscopy, quantitative real-time PCR (qPCR) and liquid-chromatography, coupled with tandem mass-spectrometry (LC-MS/MS), to search for the three azaspiracid-producing species known from the North Atlantic: Azadinium spinosum, Az. poporum and Amphidoma languida. Findings revealed that AZA-producers and respective toxins were widely distributed in the survey area, with high cell densities in the North Sea area and along the Irish coastline. Highlight was a bloom stage of Am. languida with 1.2 × 105 cells L-1, observed on a central North Sea station. Results of microscopy, molecular and chemical analyses matched well, which increased the confidence about species and toxin detection. This study supports again the recommendation to include toxigenic Amphidomataceans into regular monitoring programs and further demonstrated the advantage of real-time, multi-method approaches to investigate inconspicuous, harmful microalgae species in the field.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-07-01
    Description: Blooms of Alexandrium spp. are a well-known phenomenon in Northern European waters. While A. tamarense/catenella, and A. pseudogonyaulax have been reported from marine waters, high densities of A. ostenfeldii are mainly observed at lower salinities in North Sea estuaries and the Baltic Sea, suggesting salinity as a driver of Alexandrium species composition and toxin distribution. To investigate this relationship, an oceanographic expedition through a natural salinity gradient was conducted in June 2016 along the coasts of Denmark. Besides hydrographic data, phytoplankton and sediment samples were collected for analyses of Alexandrium spp. cell and cyst abundances, for toxin measurement and cell isolation. Plankton data revealed the predominance of A. pseudogonyaulax at all transect stations while A. ostenfeldii and A. catenella generally contributed a minor fraction to the Alexandrium community. High abundances of A. pseudogonyaulax in the shallow enclosed Limfjord were accompanied by high amounts of goniodomin A (GDA). This toxin was also detected at low abundances along with A. pseudogonyaulax in the North Sea and the Kattegat. Genetic and morphological characterization of established strains showed high similarity of the Northern European population to distant geographic populations. Despite low cell abundances of A. ostenfeldii, different profiles of cycloimines were measured in the North Sea and in the Limfjord. This field survey revealed that salinity alone does not determine Alexandrium species and toxin distribution, but emphasizes the importance of habitat conditions such as proximity to seed banks, shelter, and high nutrient concentrations. The results show that A. pseudogonyaulax has become a prominent member of the Alexandrium spp. community over the past decade in the study area. Analyses of long term monitoring data from the Limfjord confirmed a recent shift to A. pseudogonyaulax dominance. Cyst and toxin records of the species in Kiel Bight suggest a spreading potential into the brackish Baltic Sea, which might lead to an expansion of blooms under future climate conditions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-12-08
    Description: Some species of the dinophytes Azadinium and Amphidoma (Amphidomataceae) produce azaspiracids (AZA), lipophilic polyether compounds responsible for Azaspiracid Shellfish Poisoning (AZP) in humans after consumption of contaminated seafood. Toxigenic Amphidomataceae are known to occur in the North Atlantic and the North Sea area, but little is known about their importance in Danish coastal waters. In 2016, 44 Stations were sampled on a survey along the Danish coastline, covering the German Bight, Limfjord, the Kattegat area, Great Belt and Kiel Bight. Samples were analysed by live microscopy, liquid chromatography-tandem mass spectrometry (LC–MS/MS) and quantitative polymerase-chain-reaction (qPCR) on the presence of Amphidomataceae and AZA. Amphidomataceae were widely distributed in the area, but were below detection limit on most of the inner Limfjord stations. Cell abundances of the three toxigenic species, determined with species-specific qPCR assays on Azadinium spinosum, Az. poporum and Amphidoma languida, were generally low and restricted to the North Sea and the northern Kattegat, which was in agreement with the distribution of the generally low AZA abundances in plankton samples. Among the toxigenic species, Amphidoma languida was dominant with highest cell densities up to 3×103 cells L−1 on North Sea stations and at the western entrance of the Limfjord. Azaspiracids detected in plankton samples include low levels of AZA-1 at one station of the North Sea, and higher levels of AZA-38 and -39 (up to 1.5 ng L−1) in the North Sea and the Limfjord entrance. Furthermore, one new AZA (named AZA-63) was discovered in plankton of two North Sea stations. Morphological, molecular, and toxinological characterisation of 26 newly established strains from the area confirmed the presence of four amphidomatacean species (Az. obesum, Az. dalianense, Az. poporum and Am. languida). The single new strain of Az. poporum turned out as a member of Ribotype A2, which was previously only known from the Mediterranean. Consistent with some of these Mediterranean A2 strains, but different to the previously established AZA-37 producing Az. poporum Ribotype A1 strains from Denmark, the new strain did not contain any AZA. Azaspiracids were also absent in all Az. obesum and Az. dalianense strains, but AZA-38 and -39 were found in all Am. languida strains with total AZA cell quotas ranging from 0.08 up to 94 fg cell−1. In conclusion, AZA-producing microalgae and their respective toxins were low in abundance but widely present in the area, and thus might be considered in local monitoring programs to preserve seafood safety in Danish coastal waters.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-14
    Description: The South Pacific Gyre (SPG) covers 10% of the ocean’s surface and is often regarded as a marine biological desert. To gain an on-site overview of the remote, ultraoligotrophic microbial community of the SPG, we developed a novel onboard analysis pipeline, which combines next-generation sequencing with fluorescence in situ hybridization and automated cell enumeration. We tested the pipeline during the SO-245 “UltraPac” cruise from Chile to New Zealand and found that the overall microbial community of the SPG was highly similar to those of other oceanic gyres. The SPG was dominated by 20 major bacterial clades, including SAR11, SAR116, the AEGEAN-169 marine group, SAR86, Prochlorococcus, SAR324, SAR406, and SAR202. Most of the bacterial clades showed a strong vertical (20 m to 5,000 m), but only a weak longitudinal (80°W to 160°W), distribution pattern. Surprisingly, in the central gyre, Prochlorococcus, the dominant photosynthetic organism, had only low cellular abundances in the upper waters (20 to 80 m) and was more frequent around the 1% irradiance zone (100 to 150 m). Instead, the surface waters of the central gyre were dominated by the SAR11, SAR86, and SAR116 clades known to harbor light-driven proton pumps. The alphaproteobacterial AEGEAN-169 marine group was particularly abundant in the surface waters of the central gyre, indicating a potentially interesting adaptation to ultraoligotrophic waters and high solar irradiance. In the future, the newly developed community analysis pipeline will allow for on-site insights into a microbial community within 35 h of sampling, which will permit more targeted sampling efforts and hypothesis-driven research.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Technische Informationsbibliothek Hannover (TIB)
    In:  EPIC3Cruise Report, Technische Informationsbibliothek Hannover (TIB), 24 p.
    Publication Date: 2021-02-25
    Description: The AZAHAB HE516 survey aboard the R/V Heincke (Helgoland) was conducted during summer 2018 to study the coastal oceanographic processes and mechanisms underlying the dynamics of Amphidomatacean species and the biogeographical distribution of their toxins in the water column. The survey transects were from Bremerhaven, Germany across the southern North Sea and the British Channel with detailed sampling initiated in the Celtic Sea and West Irish coastal waters. From Irish waters the transects continued along the Outer Hebrides and the northern Scottish coast to the North Sea, which again was sampled in more detail. In addition to the primary transect, five transects perpendicular to the coast were performed in along the Irish coast. Standard physical oceanographic parameters (temperature: ˚C, salinity: psu, σt ) plus current velocity were supplemented with bio-optical measurements with multiple profiling fluorometers and various passive optical profilers (for turbidity and diffuse attenuation), including hyperspectral radiometers and microscopic plankton analyses, on-board phycotoxin measurements, and real time polymerase chain reaction (PCR).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-02-01
    Description: Arctic regions have experienced pronounced biological and biophysical transformations as a result of global change processes over the last several decades. Current hypotheses propose an elevated impact of those environmental changes on the biodiversity, community composition and metabolic processes of species. The effects on ecosystem function and services, particularly when invasive or toxigenic harmful species become dominant, can be expressed over a wide range of temporal and spatial scales in plankton communities. Our study focused on the comparison of molecular biodiversity of three size-fractions (micro-, nano-, picoplankton) in the coastal pelagic zone of West Greenland and their association with environmental parameters. Molecular diversity was assessed via parallel amplicon sequencing the 28S rRNA hypervariable D1/D2 region. We showed that biodiversity distribution within the area of Uummannaq Fjord, Vaigat Strait and Disko Bay differed markedly within and among size-fractions. In general, we observed a higher diversity within the picoplankton size fraction compared to the nano- and microplankton. In multidimensional scaling analysis, community composition of all three size fractions correlated with cell size, silicate and phosphate, chlorophyll a (chl a) and dinophysistoxin (DTX). Individually, each size fraction community composition also correlated with other different environmental parameters, i.e. temperature and nitrate. We observed a more homogeneous community of the picoplankton across all stations compared to the larger size classes, despite different prevailing environmental conditions of the sampling areas. This suggests that habitat niche occupation for larger-celled species may lead to higher functional trait plasticity expressed as an enhanced range of phenotypes, whereas smaller organisms may compensate for lower potential plasticity with higher diversity. The presence of recently identified toxigenic harmful algal bloom (HAB) species (such as Alexandrium fundyense and A. ostenfeldii) in the area points out the potential risk for this vulnerable ecosystem in a changing world.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-01-13
    Description: Optic technologies and methods/procedures are established across all areas and scales in limnic and marine research in Germany and develop further continuously. The working group “Aquatic Optic Technologies” (AOT) constitutes a common platform for knowledge transfer among scientists and users, provides a synergistic environment for the national developer community and will enhance the international visibility of the German activities in this field. This document summarizes the AOT-procedures and -techniques applied by national research institutions. We expect to initiate a trend towards harmonization across institutes. This will facilitate the establishment of open standards, provide better access to documentation, and render technical assistance for systems integration. The document consists of the parts: Platforms and carrier systems outlines the main application areas and the used technologies. Focus parameters specifies the parameters measured by means of optical methods/techniques and indicates to which extent these parameters have a socio-political dimension. Methods presents the individual optical sensors and their underlying physical methods. Similarities denominates the common space of AOT-techniques and applications. National developments lists projects and developer groups in Germany designing optical hightechnologies for limnic and marine scientific purposes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-10-11
    Description: Azaspiracids (AZA) are a group of lipophilic polyether compounds which have been implicated in shellfish poisoning incidents around Europe. They are produced by a few species of the dinophycean genera Azadinium and Amphidoma (Amphidomataceae). The presence of AZA toxins in Norway is well documented, but knowledge of the distribution and diversity of Azadinium and other Amphidomataceae along the Norwegian coast is rather limited and poorly documented. On a research survey along the Norwegian coast in 2015 from the Skagerrak in the South to Trondheimsfjorden in the North, plankton samples from 67 stations were analysed for the presence of Azadinium and Amphidoma and their respective AZA by on-board live microscopy, real-time PCR assays specific for Amphidomataceae, and liquid chromatography-tandem mass spectrometry (LC–MS/MS). Microscopy using live samples and positive real-time PCR assays using a general family probe and two species specific probes revealed the presence of Amphidomataceae distributed throughout the sampling area. Overall abundance was low, however, and was in agreement with a lack of detectable AZA in plankton samples. Single cell isolation and morphological and molecular characterisation of established strains revealed the presence of 7 amphidomatacean species (Azadiniun spinosum, Az. poporum, Az. obesum, Az. dalianense, Az. trinitatum, Az. polongum, Amphidoma languida) in the area. Azaspiracids were produced by the known AZA producing species Az. spinosum, Az. poporum and Am. languida only. LC–MS/MS analysis further revealed that Norwegian strains produce previously unreported AZA for Norway (AZA-11 by Az. spinosum, AZA-37 by Az. poporum, AZA-38 and AZA-39 by Am. languida), and also four novel compounds (AZA-50, -51 by Az. spinosum, AZA-52, -53 by Am. languida), whose structural properties are described and which now can be included in existing analytical protocols. A maximum likelihood analysis of concatenated rDNA regions (SSU, ITS1-ITS2, partial LSU) showed that the strains of Az. spinosum fell in two well supported clades, where most but not all new Norwegian strains formed the new Ribotype B. Ribotype differentiation was supported by a minor morphological difference with respect to the presence/absence of a rim around the pore plate, and was consistently reflected by different AZA profiles. Strains of Az. spinosum from ribotype A produce AZA-1, -2 and -33, whereas the new strains of ribotype B produce mainly AZA-11 and AZA-51. Significant sequence differences between both Az. spinosum ribotypes underline the need to redesign the currently used qPCR probes in order to detect all AZA producing Az. spinosum. The results generally underline the conclusion that for the Norwegian coast area it is important that amphidomatacean species are taken into account in future studies and monitoring programs.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    OXFORD UNIV PRESS
    In:  EPIC3Journal of Plankton Research, OXFORD UNIV PRESS, 35(5), pp. 1093-1108, ISSN: 0142-7873
    Publication Date: 2019-07-17
    Description: From the German Bight along Jutland to the western Skagerrak, we found representatives of almost all groups of phycotoxins known to occur in North Sea plankton. Identification was by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in plankton size fractions, with domoic acid and 20-me G the most abundant toxins. The dominance of 20-me G in the spirolide (SPX) composition of plankton from the Jutland current system matched very well with that of an isolate of the dinoflagellate Alexandrium ostenfeldii. The SPXs of the A. ostenfeldii strain S6_P12_E11, previously isolated from the western North Sea along the Scottish coast, comprised 100% 20-me G, suggesting toxin homogeneity among North Sea populations of this species. We detected highest amounts of azaspiracid-1 in the 3–20-mm size fraction at offshore stations, where the Jutland coastal current converges with the westward North Sea flow off Skagerrak. Azadinium spinosum was subsequently identified by clonal isolation from crude cultures established from these stations. Except for lipophilic toxins usually produced by the dinoflagellate Dinophysis spp., dinophysistoxin-1 (DTX-1) and DTX-2, we detected no other phycotoxins in plankton from the southern German Bight. The spatial distribution of the phycotoxins in the eastern North Sea was apparently related to the hydrographical conditions, identified from salinity and coloured dissolved organic matter profiles. The biogeographical distribution of phycotoxins indicates a strong association with the northward advection by the Jutland current and the mixing of German Bight and North water masses along the northwest Danish coast towards the Skagerrak.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...