GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Royal Society
    In:  EPIC3Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Royal Society, 372(2018), pp. 20130283, ISSN: 1471-2962
    Publication Date: 2014-07-04
    Description: The influence of a stochastic sea ice strength parametrization on the mean climate is investigated in a coupled atmosphere–sea ice–ocean model. The results are compared with an uncoupled simulation with a prescribed atmosphere. It is found that the stochastic sea ice parametrization causes an effective weakening of the sea ice. In the uncoupled model this leads to an Arctic sea ice volume increase of about 10–20% after an accumulation period of approximately 20–30 years. In the coupled model, no such increase is found. Rather, the stochastic perturbations lead to a spatial redistribution of the Arctic sea ice thickness field. A mechanism involving a slightly negative atmospheric feedback is proposed that can explain the different responses in the coupled and uncoupled system. Changes in integrated Antarctic sea ice quantities caused by the stochastic parametrization are generally small, as memory is lost during the melting season because of an almost complete loss of sea ice. However, stochastic sea ice perturbations affect regional sea ice characteristics in the Southern Hemisphere, both in the uncoupled and coupled model. Remote impacts of the stochastic sea ice parametrization on the mean climate of non-polar regions were found to be small.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-27
    Description: A new climate model has been developed that employs a multi-resolution dynamical core for the sea ice-ocean component. In principle, the multi-resolution approach allows one to use enhanced horizontal resolution in dynamically active regions while keeping a coarse-resolution setup otherwise. The coupled model consists of the atmospheric model ECHAM6 and the finite element sea ice-ocean model (FESOM). In this study only moderate refinement of the unstructured ocean grid is applied and the resolution varies from about 25 km in the northern North Atlantic and in the tropics to about 150 km in parts of the open ocean; the results serve as a benchmark upon which future versions that exploit the potential of variable resolution can be built. Details of the formulation of the model are given and its performance in simulating observed aspects of the mean climate is described. Overall, it is found that ECHAM6–FESOM realistically simulates many aspects of the observed climate. More specifically it is found that ECHAM6–FESOM performs at least as well as some of the most sophisticated climate models participating in the fifth phase of the Coupled Model Intercomparison Project. ECHAM6–FESOM shares substantial shortcomings with other climate models when it comes to simulating the North Atlantic circulation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer Nature Switzerland
    In:  EPIC3Energy Transfers in Atmosphere and Ocean, Energy Transfers in Atmosphere and Ocean, Springer Nature Switzerland, 1, pp. 145-192, ISBN: 978-30-030-05703-9, ISSN: 2524-4264
    Publication Date: 2019-03-18
    Description: State-of-the-art global ocean circulation models used in climate studies are only passing the edge of becoming “eddy-permitting” or barely eddy-resolving. Such models commonly suffer from overdissipation of mesoscale eddies by routinely used subgrid dissipation (viscosity) operators and a resulting depletion of energy in the large-scale structures which are crucial for draining available potential energy into kinetic energy. More broadly, subgrid momentum closures may lead to both overdissipation or pileup of eddy kinetic energy and enstrophy of the smallest resolvable scales. The aim of this chapter is twofold. First, it reviews the theory of two-dimensional and geostrophic turbulence. To a large part, this is textbook material with particular emphasis, however, on issues relevant to modeling the global ocean in the eddy- permitting regime. Second, we discuss several recent parameterizations of subgrid dynamics, including simplified backscatter schemes by Jansen and Held, stochastic superparameterizations by Grooms and Majda, and an empirical backscatter scheme by Mana and Zanna.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-05-04
    Description: We present a simulation of Antarctic iceberg drift and melting that includes small, medium-sized, and giant tabular icebergs with a realistic size distribution. For the first time, an iceberg model is initialized with a set of nearly 7000 observed iceberg positions and sizes around Antarctica. The study highlights the necessity to account for larger and giant icebergs in order to obtain accurate melt climatologies. We simulate drift and lateral melt using iceberg-draft averaged ocean currents, temperature, and salinity. A new basal melting scheme, originally applied in ice shelf melting studies, uses in situ temperature, salinity, and relative velocities at an iceberg's bottom. Climatology estimates of Antarctic iceberg melting based on simulations of small (≤ 2.2 km), 'small-to-medium'-sized (≤ 10 km), and small-to-giant icebergs (including icebergs 〉 10 km) exhibit differential characteristics: successive inclusion of larger icebergs leads to a reduced seasonality of the iceberg meltwater flux and a shift of the mass input to the area north of 58 °S, while less meltwater is released into the coastal areas. This suggests that estimates of meltwater input solely based on the simulation of small icebergs introduce a systematic meridional bias; they underestimate the northward mass transport and are, thus, closer to the rather crude treatment of iceberg melting as coastal runoff in models without an interactive iceberg model. Future ocean simulations will benefit from the improved meridional distribution of iceberg melt, especially in climate change scenarios where the impact of iceberg melt is likely to increase due to increased calving from the Antarctic ice sheet.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    JOHN WILEY & SONS LTD
    In:  EPIC3Quarterly Journal of the Royal Meteorological Society, JOHN WILEY & SONS LTD, 146(726), pp. 284-300, ISSN: 0035-9009
    Publication Date: 2020-04-27
    Description: This study introduces a new flow‐dependent distribution sampling (FDDS) scheme for air–sea coupling. The FDDS scheme is implemented in a climate model and used to improve the simulated mean and variability of atmospheric and oceanic surface fields and thus air–sea fluxes. Most coupled circulation models use higher resolutions in the sea ice and ocean compared to the atmospheric model component, thereby explicitly simulating the atmospheric subgrid‐scale at the interface. However, the commonly applied averaging of surface fields and air–sea fluxes tends to smooth fine‐scale structures, such as oceanic fronts. The stochastic FDDS scheme samples the resolved spatial ocean (and sea ice) subgrid distribution that is usually not visible to a coarser‐resolution atmospheric model. Randomly drawn nodal ocean values are passed to the corresponding atmospheric boxes for the calculation of surface fluxes, aiming to enhance surface flux variability. The resulting surface field perturbations of the FDDS scheme are based on resolved dynamics, displaying pronounced seasonality with realistic magnitude. The AWI Climate Model is used to test the scheme on interannual time‐scales. Our set‐up features a high ocean‐to‐atmosphere resolution ratio in the Tropics, with grid‐point ratios of about 60:1. Compared to the default deterministic averaging, changes are largest in the Tropics leading to an improved spatial distribution of precipitation with bias reductions of up to 50%. Enhanced sea‐surface temperature variability in boreal winter further improves the seasonal phase locking of temperature anomalies associated with the El Niño–Southern Oscillation. Mean 2m temperature, sea ice thickness and concentration react with a contrasting dipole pattern between hemispheres but a joint increase of monthly and interannual variability. This first approach to implement a flow‐dependent stochastic coupling scheme shows considerable benefits for simulations of global climate, and various extensions and modifications of the scheme are possible.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  EPIC3EGU General Assembly 2018, Vienna, Austria, 2018-04-08-2018-04-13AS5.6/BG4.14/CL5.09/OS1.14 - Recent Developments in Numerical Earth System Modelling
    Publication Date: 2021-02-09
    Description: Atmosphere-ocean coupling is of major importance for numerical climate models. Systematic errors in surface flux computations affect both components simultaneously. As an example, surface flux variations caused by (sub-)mesoscale oceanic features and their impact on the atmospheric circulation are generally underrepresented in current models. In the case of coupled climate models, atmospheric sub-grid scale information is in fact available at the surface, as part of it is typically resolved by the oceanic model component. We present a stochastic scheme that couples resolved spatial ocean (and ice) variability, previously not visible to the atmospheric model. Consequently, the resulting SST perturbations of the stochastic scheme are based on resolved dynamics, displaying a pronounced seasonality and realistic magnitude. We apply the stochastic coupling method in the AWI Climate Model, a new multi-resolution climate model with an ocean component (FESOM) supporting unstructured triangular grids. Our specific setup features a high ocean-to-atmosphere resolution ratio in the tropics, with grid point ratios of about 60:1 (less than 25km to about 200km). Compared to the default deterministic coupling, changes are largest in the tropics, leading to an improved distribution of convective precipitation, and reductions of prominent biases of up to 50%. The scheme does not rely on a simultaneous increase of resolution in the atmospheric component, saving computational resources. The results are also of interest to other modeling centres employing high ocean-to-atmosphere resolution ratios, as the coupling scheme could be implemented relatively easily as an additional coupling option, without a change to the model code. (Oral in AS5.6/BG4.14/CL5.09/OS1.14 - Recent Developments in Numerical Earth System Modelling)
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  EPIC3POLAR2018 Open Science Conference OSC, Davos, Switzerland, 2018-06-19-2018-06-23
    Publication Date: 2021-02-09
    Description: Poster Code: Fri_214_OS-4_1872 Iceberg calving is an important component of the mass balance of the Antarctic Ice Sheet, with recent estimates of ∼1300 Gt/year being on the same level as ice shelf basal melting. The iceberg mass is usually assumed to be evenly divided between giant icebergs (length 〉10km) and smaller ones, with some estimates even preferring giant icebergs (as high as 89%). However, it is still unclear what the best way is to include giant icebergs into model estimates of the Southern Ocean freshwater cycle. Here, we estimate the iceberg meltwater input from a simulation of present-day Antarctic icebergs and compare it to the balance between precipitation and evaporation (P-E) and sea-ice production rates. For the first time, an iceberg model is initialized with a set of nearly 7000 satellite-observed iceberg positions and sizes. It reproduces typical drift patterns for a large spectrum of size classes, including typical routes taken by giant icebergs. The associated meltwater input is generally on the order of 5–20% of the P-E balance in large areas of the Southern Ocean, especially around the coast, with local maxima even exceeding P-E. Furthermore, the freshwater flux from melting icebergs is on the order of 5–20% of coastal sea ice production rates and, thus, partly compensates the effect of brine rejection in the annual mean. Iceberg melting is also the largest vector of freshwater input from frozen ice along (and northward of) the sea-ice edge.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  EPIC3European Geosciences Union General Assembly 2017, Austria Center Vienna, Vienna, Austria, 2017-04-23-2017-04-28
    Publication Date: 2017-05-04
    Description: We present a simulation of Antarctic iceberg drift and melting that includes small (〈2.2 km), medium-sized, and giant tabular icebergs with lengths of more than 10km. The model is initialized with a realistic size distribution obtained from satellite observations. Our study highlights the necessity to account for larger and giant icebergs in order to obtain accurate melt climatologies. Taking iceberg modeling a step further, we simulate drift and melting using iceberg-draft averaged ocean currents, temperature, and salinity. A new basal melting scheme, originally applied in ice shelf melting studies, uses in situ temperature, salinity, and relative velocities at an iceberg’s keel. The climatology estimates of Antarctic iceberg melting based on simulations of small, ’small-to-medium’-sized, and small-to-giant icebergs (including icebergs 〉 10km) exhibit differential characteristics: successive inclusion of larger icebergs leads to a reduced seasonality of the iceberg meltwater flux and a shift of the mass input to the area north of 58◦S, while less meltwater is released into the coastal areas. This suggests that estimates of meltwater input solely based on the simulation of small icebergs introduce a systematic meridional bias; they underestimate the northward mass transport and are, thus, closer to the rather crude treatment of iceberg melting as coastal runoff in models without an interactive iceberg model. Future ocean simulations will benefit from the improved meridional distribution of iceberg melt, especially in climate change scenarios where the impact of iceberg melt is likely to increase due to increased calving from the Antarctic ice sheet.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, 41(23), pp. 8396-8403, ISSN: 0094-8276
    Publication Date: 2015-02-24
    Description: Ensemble experiments with a climate model are carried out in order to explore how incorporating a stochastic ice strength parameterization to account for model uncertainty affects estimates of potential sea ice predictability on time scales from days to seasons. The impact of this new parameterization depends strongly on the spatial scale, lead time and the hemisphere being considered: Whereas the representation of model uncertainty increases the ensemble spread of Arctic sea ice thickness predictions generated by atmospheric initial perturbations up to about 4 weeks into the forecast, rather small changes are found for longer lead times as well as integrated quantities such as total sea ice area. The regions where initial condition uncertainty generates spread in sea ice thickness on subseasonal time scales (primarily along the ice edge) differ from that of the stochastic sea ice strength parameterization (along the coast lines and in the interior of the Arctic). For the Antarctic the influence of the stochastic sea ice strength parameterization is much weaker due to the predominance of thinner first year ice. These results suggest that sea ice data assimilation and prediction on subseasonal time scales could benefit from taking model uncertainty into account, especially in the Arctic.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  EPIC3European Geophysical Union, Vienna, Austria, 2013-04-07-2013-04-12
    Publication Date: 2015-03-06
    Description: Icebergs are commonly ignored in current general circulation models despite their connections to ocean stratification, phytoplankton growth and redistribution of freshwater in the Southern Ocean. On the way to fully including icebergs in ocean circulation models, we present FESOM-IB, the high resolution Finite Element Sea Ice - Ocean Model (FESOM) enhanced by an IceBerg drift and decay module developed at AWI Bremerhaven. By solving the momentum equations for iceberg drift, the iceberg trajectory is computed from an evaluation of the FESOM ice/ocean velocity fields and sea surface height at every time step. Icebergs are assumed to be cubical-shaped and treated as Lagrangian point masses having properties such as length, width and height. Simple diagnostic equations for computing the melt rates of icebergs are applied and iceberg dimensions are adjusted accordingly. Therefore the numerical method's stability for the solution of the momentum equations has to be independent from iceberg size. Our numerical procedure proved to be stable across the full range of iceberg classes; small to giant icebergs may be modelled. We present a 3-year simulation of 308 artifical icebergs from 4 different size classes started at 77 circum-Antarctic locations. Melt rates as well as the components of iceberg momentum balance are quantified and the influence of iceberg size on the drift patterns is discussed. In our simulation giant icebergs tend to stay close to the Antarctic coast. They drift westwards in the coastal current and may only leave it at well-defined bifurcation points in the Weddell Sea, the Ross Sea and over the Kerguelen Plateau. In contrast, smaller icebergs show an off-shore drift component early in their lives. Independent of the iceberg size, the dominant iceberg velocity component is changed into eastward as soon as icebergs reach the ACC.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...