GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 5 (2015): 9764, doi:10.1038/srep09764.
    Description: Swimming behaviors of planktonic larvae impact dispersal and population dynamics of many benthic marine invertebrates. This key ecological function is modulated by larval development dynamics, biomechanics of the resulting morphology, and behavioral choices. Studies on ocean acidification effects on larval stages have yet to address this important interaction between development and swimming under environmentally-relevant flow conditions. Our video motion analysis revealed that pH covering present and future natural variability (pH 8.0, 7.6 and 7.2) did not affect age-specific swimming of larval green urchin Strongylocentrotus droebachiensis in still water nor in shear, despite acidified individuals being significantly smaller in size (reduced growth rate). This maintenance of speed and stability in shear was accompanied by an overall change in size-corrected shape, implying changes in swimming biomechanics. Our observations highlight strong evolutionary pressure to maintain swimming in a varying environment and the plasticity in larval responses to environmental change.
    Description: K.C. was supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution (WHOI), with funding provided by the Coastal Ocean Institute, the Croucher Foundation, and the Royal Swedish Academy of Sciences. S.D. was financially supported by the Linnaeus Centre for Marine Evolutionary Biology at the University of Gothenburg (http://www.cemeb.science.gu.se/) and a Linnaeus grant from the Swedish Research Councils VR and Formas. Additional funding was provided from the European Seventh Framework Programme under grant agreement 265847.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2015. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 28, no. 2 (2015): 48-61, doi:10.5670/oceanog.2015.31.
    Description: Oceanic and coastal waters are acidifying due to processes dominated in the open ocean by increasing atmospheric CO2 and dominated in estuaries and some coastal waters by nutrient-fueled respiration. The patterns and severity of acidification, as well as its effects, are modified by the host of stressors related to human activities that also influence these habitats. Temperature, deoxygenation, and changes in food webs are particularly important co-stressors because they are pervasive, and both their causes and effects are often mechanistically linked to acidification. Development of a theoretical underpinning to multiple stressor research that considers physiological, ecological, and evolutionary perspectives is needed because testing all combinations of stressors and stressor intensities experimentally is impossible. Nevertheless, use of a wide variety of research approaches is a logical and promising strategy for improving understanding of acidification and its effects. Future research that focuses on spatial and temporal patterns of stressor interactions and on identifying mechanisms by which multiple stressors affect individuals, populations, and ecosystems is critical. It is also necessary to incorporate consideration of multiple stressors into management, mitigation, and adaptation to acidification and to increase public and policy recognition of the importance of addressing acidification in the context of the suite of other stressors with which it potentially interacts.
    Description: Funding for research on acidification and multiple stressors was provided by NOAACSCOR NA10NOS4780138 to DLB, NASA NNX14AL8 to JS, NSF OCE-1219948 to JMB, NSF OCE-927445 and OCE-1041062 to LAL, NSF EF-1041070 to W-JC, a Linnaeus grant from the Swedish Research Councils VR and Formas to SD, NSF EF-0424599 to SCD, NSF OCE-1041038 to UP, NSF EF-1316113 to BAS, NSF ANT-1142122 to AET, NSF OCE-1316040 to AMT, and the NOAA Ocean Acidification Program Office to BP, LMM, and WCL.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    In:  EPIC3Science, 372(6547), pp. 1160-1161, ISSN: 0036-8075
    Publication Date: 2021-12-06
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-09-30
    Description: This Scientific Summary on Multiple Ocean Stressors for Policy Makers offers a reference for all concerned stakeholders to understand and discuss all types of ocean stressors. This document will help coordinate action to better understand how multiple stressors interact and how the cumulative pressures they cause can be tackled and managed. It is a first step towards increased socio-ecological resilience to multiple ocean stressors (Figure 1). Ecosystem-Based Management (EBM)1 recognizes the complex and interconnected nature of ecosystems, and the integral role of humans in these ecosystems. EBM integrates ecological, social and governmental principles. It considers the tradeoffs and interactions between ocean stakeholders (e.g. fishing, shipping, energy extraction) and their goals, while addressing the reduction of conflicts and the negative cumulative impacts of human activities on ecosystem resilience and sustainability. Thus, EBM is an ideal science-based approach for managing the impacts of cumulative stressors on marine ecosystems. The United Nations Decade of Ocean Science for Sustainable Development (2021–2030; Ocean Decade), which is based on a multi-stakeholder consultative process, identified 10 Ocean Decade Challenges. Challenge 2: Understand the effects of multiple stressors on ocean ecosystems, and develop solutions to monitor, protect, manage and restore ecosystems and their biodiversity under changing environmental, social and climate conditions addresses the overall outcomes of the Decade. In particular, outcomes aimed at a clean, healthy and resilient, safe and predicted, sustainably harvested and productive, and accessible ocean, with open and equitable access to data, information and technology and innovation by 2030. This Scientific Summary for Policy Makers is also a call to action underlining the urgency to understand, model and manage multiple ocean stressors now. We cannot manage what we do not understand, and we cannot be efficient without prioritization of ocean actions appropriate to the place and time.
    Description: OPENASFA INPUT The complete report should be cited as follows: IOC-UNESCO. 2022. Multiple Ocean Stressors: A Scientific Summary for Policy Makers. P.W. Boyd et al. (eds). Paris, UNESCO. 20 pp. (IOC Information Series, 1404) doi:10.25607/OBP-1724
    Description: Published
    Description: Refereed
    Keywords: Oceans ; Marine Ecosystems ; Marine pollution ; Global warming ; Human activities effects ; Environmental monitoring ; Oceanographic Research
    Repository Name: AquaDocs
    Type: Report
    Format: 22pp.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  EPIC3Climate Change 2022: Impacts, adaptation and vulnerability. Contribution of the WGII to the 6th assessment report of the intergovernmental panel on climate change, ,, IPCC AR6 WGII, https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_FinalDraft_Chapter03.pdf, Cambridge University Press
    Publication Date: 2022-08-23
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-26
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Biology 160 (2013): 1773-1787, doi:10.1007/s00227-012-2031-5.
    Description: Ocean acidification is increasingly recognized as a component of global change that could have a wide range of impacts on marine organisms, the ecosystems they live in, and the goods and services they provide humankind. Assessment of these potential socio-economic impacts requires integrated efforts between biologists, chemists, oceanographers, economists and social scientists. But because ocean acidification is a new research area, significant knowledge gaps are preventing economists from estimating its welfare impacts. For instance, economic data on the impact of ocean acidification on significant markets such as fisheries, aquaculture and tourism are very limited (if not non-existent), and non-market valuation studies on this topic are not yet available. Our paper summarizes the current understanding of future OA impacts and sets out what further information is required for economists to assess socio-economic impacts of ocean acidification. Our aim is to provide clear directions for multidisciplinary collaborative research.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...