GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Environmental policy. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (429 pages)
    Edition: 1st ed.
    ISBN: 9783031104374
    DDC: 338.927
    Language: English
    Note: Intro -- Contents -- Chapter 1: Rethinking Environmental Governance: Exploring the Sustainability Potential in India -- 1 Introduction -- 2 Objectives of the Study -- 3 Materials and Methods -- 4 Major Initiatives to Govern Environment in India -- 4.1 Indian Forest Act, 1878, and Forest Conservation Act, 1980 -- 4.2 Wildlife Protection Act, 1972 -- 4.3 Water (Prevention and Control of Pollution) Act, 1974 -- 4.4 Air (Prevention and Control of Pollution) Act, 1981 -- 4.5 Environment (Protection) Act, 1986 -- 4.6 Hazardous Waste (Management and Handling) Rules, 1989 -- 4.7 Noise Pollution (Regulation and Control) Rules, 2000 -- 4.8 Biological Diversity Act, 2002 -- 4.9 National Environmental Policy, 2006 -- 4.10 National Green Tribunal Act, 2010 -- 5 Attributes of Good Environmental Governance -- 6 Dimensions of Environmental Governance -- 7 In Search for Proper Plan of Action -- 8 In Conclusion: The Way Forward -- References -- Chapter 2: The Role of Local Governments in Encouraging Participation in Reforestation Activities -- 1 Introduction -- 2 General Conditions of the Forest Areas Around the World -- 3 SDG 2030, Climate Change, and Forest Fires -- 4 Local Government Role in Forest Areas and Reforestation -- 5 Public Participation in Protecting Forests and Being a Part in Reforestation Activities -- 6 Examples of Reforestation Activities with the Contributions of Local Governments and Public -- 6.1 China Reforestation Activities -- 6.2 The Great Green Wall of Africa -- 7 Conclusion -- References -- Chapter 3: Accessing Regional Liveability by Indicators: A Case Study of Mumbai Metropolitan Region -- 1 Introduction -- 2 Context -- 3 Discourses on Liveability -- 4 Methodology on Liveability and Sustainability -- 5 Observations from the Study Region -- 5.1 Mumbai Metropolitan Region. , 6 Generation of Local Benchmarks Through Community Participation -- 7 Suggestions and Conclusion -- References -- Chapter 4: Operationalizing the Regional Sustainability Assessment by Indicators -- 1 Introduction -- 2 Sustainability: A Multidimensional Concept -- 3 Multidimensionality That Favors Assessment -- 4 Regional Sustainability Assessment: Operational Challenges -- 5 RSA Operational Gaps and Methodological Pathways -- 5.1 Multilevel Interaction in the RSA -- 5.1.1 Interregional Multilevel Interaction -- 5.1.2 Intraregional Multilevel Interaction -- 5.2 Stakeholder Participation in RSA -- 5.3 Geospatial Approach in the RSA -- 5.3.1 Spatialization of Data for RSA -- 5.3.2 Geospatialized RSA -- 6 Final Considerations -- 6.1 Research Limitations -- 6.2 Gaps That Persevere -- References -- Chapter 5: Voluntary Sustainability Standards for Corporate Social Responsibility -- 1 Introduction -- 2 Voluntary Sustainability Standards (VSS) -- 2.1 Emergence and Purpose of the VSS -- 2.2 VSS: Voluntary Use or Mandatory Trend? -- 3 Corporate Social Responsibility (CSR) -- 4 The VSS, Global Trade, and CSR for a Sustainability Network -- 5 VSS Contributions to CSR -- 6 Challenges VSS and CSR -- 7 Conclusion -- References -- Chapter 6: Universities to Educate in Sustainability: From Pedagogy to Management -- 1 Introduction -- 2 Sustainable Universities -- 3 Pedagogical Transition -- 4 Management Transitions -- 4.1 Environmentalization -- 4.2 Tools for Assessing Sustainability Management at HEIs -- 4.2.1 Global Reporting Initiative (GRI) -- 4.2.2 Graphical Assessment of Sustainability in Universities (GASU) -- 4.2.3 Green Report Card -- 4.2.4 STARS -- 4.2.5 GreenMetric -- 4.2.6 AISHE -- 4.2.7 CSAF -- 4.2.8 SAQ -- 4.2.9 KAP -- 4.2.10 Other Initiatives -- 4.2.11 Green Campus -- 4.2.12 Living Labs -- 5 Conclusion -- References. , Chapter 7: Analysis of the Path of Studies on Financial Education and Sustainability -- 1 Introduction -- 2 Literature Review -- 3 Methodological Procedures -- 4 Presentation and Interpretation of Results -- 5 Final Remarks -- References -- Chapter 8: Unveiling Diversity and the Unwanted Inequality in Organizational Leadership -- 1 Introduction -- 1.1 Guaranteeing the Golden Ticket Is Not Enough -- 1.2 Consistent Signaling Diversity and Equity Through Leadership -- 2 Method -- 3 Results and Discussion -- 3.1 Descriptive Data Analysis -- 3.2 Fixed and Random Effects on Panel Analysis -- 3.3 Hypothesis Results -- 4 Conclusions -- 4.1 Implications -- References -- Chapter 9: Critical and Instrumental Perspectives of Interdisciplinarity for Business Education -- 1 Introduction: The Generous Vision -- 2 Interdisciplinarity Genesis -- 2.1 Focus on the Society Issues: The Critical Dimension of Interdisciplinarity -- 3 Upstreaming CSR: The Principles for Responsible Management Education Role -- 4 PRME Harbors Interdisciplinarity in a "Brazilian Way" -- 4.1 Students Organizations Triggering Interdisciplinarity -- 5 Conclusion and Framework Proposal -- References -- Chapter 10: Who Pays for Corporate Social Responsibility?: Proposal for an Externalization Index of CSR Costs -- 1 Introduction -- 2 Literature Review -- 2.1 The Theoretical Debate of Who Assumes CSR -- 2.2 An Index as an Answer -- 2.2.1 CSR Modality -- 2.2.2 Registry -- 2.2.3 Stakeholders -- 2.3 Proposed Behavioral Categories -- 2.4 The Proposed Externalization Index -- 3 Methods -- 3.1 Measuring Instrument -- 3.2 Data Collection -- 3.3 Proposed Index -- 3.4 Index Validation -- 4 Results -- 4.1 Modality -- 4.2 Registry -- 4.3 CSR Cost Externalization Level -- 4.4 Registry Analysis -- 4.5 Modality Analysis -- 4.6 Overall Analysis -- 5 Discussion -- 6 Conclusions -- References. , Chapter 11: Emerging Civilian UAV Innovations Promoting Sustainability in Indian Agri-Insurance Through Embedding Culture-Specific Values -- 1 Introduction -- 2 Responsible Innovation -- 3 Methodology -- 4 Current Scenario -- 4.1 Agriculture Insurance -- 4.2 Civil UAV -- 5 Implications of Values in Civil UAV Deployment -- 6 Discussion of the Findings -- 7 Conclusion -- References -- Chapter 12: COVID-19: The Urgency to Expand Sustainable Nutrition Solutions -- 1 Introduction -- 2 COVID-19 and Nutrition Disruption -- 3 Juxtaposing Nutrition and Sustainability -- 4 Advances in Science to Tackle Nutrition and Issue of Sustainability -- 5 Nutraceuticals and Sustainable Nutrition -- 6 Future Prospective -- 7 Conclusion -- References -- Chapter 13: Environmental Consciousness and Sustainable Development Goal with Special Reference to Public Transportation in India: A Review -- 1 Introduction -- 2 Background -- 3 Analytical Discussion -- 4 Sustainable Public Transportation in Kolkata -- 5 Conclusion -- References -- Chapter 14: Pandemic, Resilience and Sustainability: Agroecology and Local Food System as the Way Forward -- 1 Introduction -- 2 The Discourse of Agricultural Modernism in India: A Critical Inquiry -- 3 Implications for Sustainability, Food Security and Farmer's Autonomy -- 4 The Way Forward: Agroecology, Resilience and Local Food Systems -- 5 Conclusion -- References -- Chapter 15: Integrated Water Resources Management and Urban Sustainability -- 1 Urban Sustainability and Water Concerns -- 1.1 Urban Water Management Transitions -- 1.2 Focusing on the Stages of Urban Management Transitions -- 2 IWRM and Sustainability Perspectives -- 2.1 Integrated Water Resources Management: Definitions and Perspectives -- 2.2 Adaptive Strategy to Operationalize IWRM -- 2.3 Principles of IWRM. , 2.4 Principles for Sustainability: From the Principles of Bellagio to the BellagioSTAMP -- 2.5 Interrelationship Between IWRM Principles and BellagioSTAMP Principles -- 3 Food-Energy-Water Nexus for the Global Sustainable Development -- 4 Water Relevance for the 2030 Agenda -- 5 Mitigation and Adaptation to Natural Disasters -- 6 The Concept of Water Security -- References -- Chapter 16: Corporate Social Responsibility and Roles of Developers for Sustainability in Companies -- 1 Introduction -- 2 Efforts to Be Made by the Corporate Sector to Promote Sustainable Work Culture and Protecting Environment -- 3 Formal Practices for Corporate Sustainability -- 4 How CSR Leads Sustainable Corporate Sector -- 5 Total Disclosure on Region of Intervention in the CSR Policy -- 6 Employee Volunteering for the Implementation of CSR Projects -- 7 Similarities Between CSR and Corporate Sustainability -- 8 Differences Between CSR and Corporate Sustainability -- 9 Approaches for Sustainable Design -- 10 Eco-Labelling -- 11 Business Practices, Work Culture, and Environment -- 12 Overview -- 13 Principles of Corporate Governance and Work Culture -- 14 Role of Developers -- 15 Accountability of Software Developers -- 16 Futuristic Thoughts About CSR in New Normal -- 17 Conclusion -- References -- Chapter 17: Plastic Pollution During COVID-19 Pandemic: A Disaster in the Making -- 1 Introduction -- 2 Diversity of Commonly Used Synthetic Plastics -- 3 Causes and Effects of Plastic Pollution on the Different Ecosystems: A Global Perspective -- 4 Generation of Biomedical and Domestic/Commercial Plastic Wastes During COVID-19 Pandemic -- 5 The Sustainable Road Ahead -- 5.1 Microbial Degradation of Plastics -- 5.2 Biodegradable Plastics or Bioplastics -- 5.2.1 Toxicological Impact of Biodegradable Plastics -- 5.3 Advocating the Principle of 4 Rs -- 5.4 Circular Economy. , 6 Conclusions and Way Forward.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Climatic changes. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (421 pages)
    Edition: 1st ed.
    ISBN: 9783031246593
    DDC: 363.73874095496
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Ionic solutions-Handbooks, manuals, etc. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (520 pages)
    Edition: 1st ed.
    ISBN: 9783527839506
    DDC: 546.34
    Language: English
    Note: Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 History and Development of Ionic Liquids -- 1.1 Introduction -- 1.2 Constituents of ILs -- 1.3 The Brief History -- 1.4 Ionic Liquid‐Like Systems -- 1.5 The Generation of ILs -- 1.5.1 First‐Generation ILs -- 1.5.2 Second‐Generation ILs -- 1.5.3 Third‐Generation ILs -- 1.6 Structural Development of ILs -- 1.6.1 Task‐Specific ILs (TSILs) -- 1.6.2 Chiral ILs -- 1.6.3 Switchable Polarity Solvent ILs -- 1.6.4 Bio‐ILs -- 1.6.5 Poly‐ILs -- 1.6.6 Energetic ILs -- 1.6.7 Metallic ILs -- 1.6.8 PILs -- 1.6.9 Acidic ILs -- 1.6.10 Basic ILs -- 1.6.11 Neutral ILs -- 1.6.12 Supported ILs -- 1.6.13 Magnetic ILs -- 1.7 Scope of ILs -- 1.8 Commercialization of ILs -- 1.9 Conclusions -- Acknowledgments -- References -- Chapter 2 Growth of Ionic Liquids and their Applications -- 2.1 Introduction -- 2.1.1 Cations -- 2.1.2 Anions -- 2.2 Growth of Ionic Liquids -- 2.2.1 Quaternization -- 2.2.2 Anion Exchange -- 2.2.3 Acid-Base Neutralization -- 2.2.4 Direct Combination -- 2.2.5 Microwave‐Assisted Synthesis -- 2.2.6 Ultrasound‐Assisted Synthesis -- 2.3 Applications of Ionic Liquids -- 2.3.1 Electrochemistry -- 2.3.1.1 Electrodeposition -- 2.3.1.2 Electrosynthesis -- 2.3.1.3 Electrocatalysis -- 2.3.2 Solvents and Catalysis -- 2.3.2.1 Ionic Liquids as Solvents for Organic Synthesis -- 2.3.2.2 Ionic Liquids as Solvents for Inorganic Synthesis -- 2.3.2.3 Ionic Liquids as Catalysts for Organic Reactions -- 2.3.3 Separation -- 2.3.4 Heat Transport and Storage -- 2.3.5 Analytics -- 2.3.6 Engineering -- 2.3.7 Performance Additives -- 2.3.8 Biotechnology -- 2.4 Conclusion and Future Prospects -- References -- Chapter 3 Study of Physicochemical Properties of Ionic Liquids -- 3.1 Introduction -- 3.2 Physicochemical Properties of Ionic Liquids -- 3.2.1 Density -- 3.2.2 Melting Point. , 3.2.3 Thermal Stability and Decomposition -- 3.2.4 Conductivity -- 3.2.5 Solubility -- 3.2.6 Surface Tension -- 3.2.7 Viscosity -- 3.2.8 Polarity -- 3.2.9 Diffusion -- 3.2.10 Vapor Pressure -- 3.2.11 Miscibility -- 3.3 Conclusion and Perspectives -- Acknowledgments -- References -- Chapter 4 Ionic Liquids as Green Solvents: Are Ionic Liquids Nontoxic and Biodegradable? -- 4.1 Introduction -- 4.2 Toxicity and Biodegradability of Ionic Liquids -- 4.2.1 Toxicological Effects and Toxicity Mechanisms of ILs -- 4.2.2 Scope of Biodegradable and Nontoxic ILs -- 4.3 Applications of Ionic Liquids as Green Solvents -- 4.3.1 Ionic Liquids as Green Solvents in Biomass Utilization and Extraction -- 4.3.2 Ionic Liquids as Green Solvents in Energy Applications -- 4.3.3 Ionic Liquids as Green Solvents in Biomedical Applications -- 4.4 IoNanofluids -- 4.4.1 Properties of INFs -- 4.4.2 Applications of INFs -- 4.4.3 Are IoNanofluids Nontoxic and Biodegradable? -- 4.5 Conclusion -- References -- Chapter 5 Promising Uses of Ionic Liquids on Carbon Carbon and Carbon Nitrogen Bond Formations -- 5.1 Introduction -- 5.2 Carbon Carbon Bond Formation Reactions -- 5.2.1 C C Cross‐Coupling Reactions -- 5.2.1.1 Heck Coupling -- 5.2.1.2 Suzuki Coupling -- 5.2.1.3 Sonogashira Coupling -- 5.2.1.4 Stille Coupling -- 5.2.1.5 Hiyama Coupling -- 5.2.2 Aldol Condensation -- 5.2.3 Claisen-Schmidt Condensation Reaction -- 5.2.4 Friedel-Crafts Alkylation -- 5.2.5 Diel-Alder Reaction -- 5.2.6 Henry Reactions -- 5.2.7 Other C C Bond Formation Reaction -- 5.3 Carbon Nitrogen Bond Formation Reaction -- 5.3.1 Biginelli Reaction -- 5.3.2 N‐Allylation Reactions -- 5.3.3 Mannich Reaction -- 5.3.4 Other C N Bond Formation Reactions -- 5.4 Conclusion -- References -- Chapter 6 Ionic Liquids in Separation Techniques -- 6.1 Introduction -- 6.2 General Characteristics of ILs. , 6.3 The Use of ILs in Separation Technology -- 6.3.1 IL‐Based Solid-Liquid Extractions -- 6.3.2 Simple SLEs -- 6.3.3 Microwave‐Assisted Extractions -- 6.3.4 Ultrasound‐Assisted Extractions -- 6.3.5 Liquid-Liquid Extraction -- 6.3.6 ILs as Mobile Phase Additives in Liquid Chromatography -- 6.3.7 ILs Used as Surface‐Bonded Stationary Phases -- 6.4 Conclusions and Future Perspectives -- References -- Chapter 7 Polymers and Ionic Liquids -- 7.1 Introduction -- 7.2 Properties of ILs -- 7.3 Synthesis of PILs -- 7.4 Types and Application of Common PILs -- 7.5 Conclusion -- References -- Chapter 8 Effect of Ionic Liquids on Electrochemical Biosensors and Other Bioelectrochemical Devices -- 8.1 Introduction -- 8.2 The Importance of Ionic Liquids in Electrochemistry -- 8.2.1 Larger Electrochemical Window -- 8.2.2 Ionic Conductivity -- 8.2.3 Hydrophobicity -- 8.2.4 Viscosity -- 8.2.5 Catalytic Performance -- 8.3 Fabrication of IL‐Based Sensing Layers -- 8.3.1 Direct Mixing -- 8.3.2 Physical Adsorption -- 8.3.3 Casting and Rubbing -- 8.3.4 Electrodeposition -- 8.3.5 Sol-Gel Encapsulation -- 8.3.6 Layer‐by‐Layer (LbL) Method -- 8.3.7 Sandwich‐Type Immunoassay -- 8.4 IL‐Based Electrochemical Biosensors -- 8.4.1 Application of RTILs in Construction of Electrochemical Biosensors -- 8.4.1.1 CNMs‐ILs‐Based Electrochemical Biosensor as Cancer Biomarker -- 8.4.1.2 CNMs‐ILs‐Based Electrochemical Biosensor for Cardiac Diseases -- 8.4.1.3 CNMs‐ILs‐Based Electrochemical Biosensor for Immunoglobulins -- 8.4.1.4 CNMs‐ILs‐Based Electrochemical Biosensor for Neurotransmitters -- 8.4.1.5 CNMs‐ILs‐Based Electrochemical Glucose Biosensors -- 8.5 Application of Ionic Liquids in Bioelectrochemical Devices -- 8.6 Conclusions and Future Prospects -- References -- Chapter 9 Nanopharmaceuticals With Ionic Liquids: A Novel Approach -- 9.1 Introduction. , 9.2 Applications of Ionic Liquids in Various Fields -- 9.3 Nanotechnology and Ionic Liquids -- 9.4 Use of Ionic Liquids in Nanocarrier Development (Reported Work) -- 9.5 Ionic Liquid‐Assisted Metal Nanoparticles -- 9.6 Conclusion -- References -- Chapter 10 Anticancer Activity of Ionic Liquids -- 10.1 Introduction -- 10.2 Classification of Ionic Liquids -- 10.3 Toxicity of Ionic Liquids -- 10.4 Anticancer Potential of Ionic Liquids -- 10.5 Conclusions and Future Scope -- References -- Chapter 11 Importance of Ionic Liquids in Plant Defense: A Novel Approach -- 11.1 Introduction -- 11.2 Generation of ILs and Their Application -- 11.3 Role of ILs in Plant Defense Mechanisms -- 11.3.1 ILs as Antibacterial Agents -- 11.3.2 ILs as Antifungal Agents -- 11.3.3 ILs as an Herbicide and Plant Growth Promoters -- 11.3.4 Effects of ILs as Deterrents -- 11.3.5 Application of ILs as Bioactive Formulations -- 11.3.6 Role of ILs in SAR Induction Mechanism -- 11.4 IL Products in Future Management of Agri Industries: An Innovative Approach -- 11.5 Conclusions -- References -- Chapter 12 Theoretical Description of Ionic Liquids -- 12.1 Introduction -- 12.2 Ionic Liquid Dynamics -- 12.2.1 Self‐Diffusion -- 12.2.2 Viscosity -- 12.3 Theoretical Advances in Force Fields and Electronic Structures -- 12.4 Mixtures in Ionic Liquids -- 12.4.1 Ionic Liquids and Interfaces -- 12.4.2 Ionic Liquids and Water -- 12.5 Applications of Ionic Liquids in Chemical Processes -- 12.5.1 Preamble -- 12.5.2 Separation and Purification -- 12.5.3 Reaction Media in Chemical and Biochemical Catalysis -- 12.6 Future Developments -- 12.7 Conclusion -- References -- Chapter 13 Theoretical Understanding of Ionic Liquid Advancements in the Field of Medicine -- 13.1 Introduction -- 13.2 A Brief History of Ionic Liquids and Deep Eutectic Solvents -- 13.3 Biomedical Applications. , 13.3.1 Solubilization of Drugs -- 13.3.2 Protein Stabilization -- 13.4 Summary and Future Aspects -- 13.4.1 Developing a Microscopic Understanding to Enable Task‐Specific Design -- References -- Chapter 14 Recent Developments in Ionic Liquid Research from Environmental Perspectives -- 14.1 Introduction -- 14.2 Applications of Ionic Liquids -- 14.2.1 Ionic Liquids as Solvents and Catalysts -- 14.2.2 Ionic Liquids in Analytical Chemistry -- 14.2.3 Ionic Liquids in Electrochemical Applications -- 14.2.3.1 In Electrodeposition -- 14.2.3.2 Energy Management -- 14.2.3.3 Bioscience -- 14.2.3.4 Biomechanics -- 14.2.4 Ionic Liquids in Industrial Applications -- 14.2.5 Ionic Liquid as Lubricants -- 14.2.6 Ionic Liquids as a Corrosion Resistant Material -- 14.2.7 Ionic Liquids as Additives in Drilling Fluid -- 14.2.8 Ionic Liquids as Absorbents in Gas Capturing -- 14.2.9 Ionic Liquid Crystals -- 14.2.10 Ionic Liquids in Biomedical Applications -- 14.3 Limitations of Ionic Liquids -- 14.4 Conclusion -- References -- Chapter 15 Ionic Liquids for Sustainable Biomass Conversion in Biorefinery -- 15.1 Introduction -- 15.2 Biomass as a Source of Organic Compounds and Fuels -- 15.3 Biomass Conversion Process -- 15.3.1 Thermochemical Process -- 15.3.2 Lignin Extraction Processes -- 15.3.3 Enzymatic Processes -- 15.4 Value‐Added Organic Compounds from Biomass in Ionic Liquids -- 15.5 Production of Biodiesel with Ionic Liquids -- 15.6 Toxicity and Ecotoxicity of ILs for Biorefinery -- 15.6.1 Toxicity of ILs Used in Biorefinery -- 15.6.2 Biodegradation of ILs Used in Biorefinery -- 15.6.3 Conclusion Regarding Toxicity and Biodegradation of ILs -- 15.7 Conclusions -- References -- Chapter 16 Ionic Liquids for Atmospheric CO2 Capture: A Techno‐Economic Assessment -- 16.1 Introduction -- 16.2 Different Processes of CO2 Capture -- 16.2.1 Membrane Separation. , 16.2.2 Cryogenic Separation.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Hazardous wastes-Environmental aspects. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (614 pages)
    Edition: 1st ed.
    ISBN: 9780323859288
    Language: English
    Note: Intro -- Hazardous Waste Management: An Overview of Advanced and Cost-Effective Solutions -- Copyright -- Contents -- Contributors -- Preface -- Section 1: Role of hazardous wastes and their environmental impacts -- Chapter 1: Hazardous wastes and the environment -- 1. Introduction -- 2. Environmental fate -- 3. Environmental science -- 4. Key concepts -- 5. Hazardous waste management hierarchy -- 5.1. Source reduction -- 5.2. Recycling -- 5.3. Disposal and treatment -- 5.4. Hazard incident response -- 6. Life cycles -- 7. Conclusions -- References -- Chapter 2: Hazardous wastes treatment, storage, and disposal facilities -- 1. Introduction -- 2. Definition of hazardous waste -- 2.1. Hazardous waste characterization -- 2.2. Characteristics of hazardous wastes -- 2.2.1. Toxicity -- 2.2.2. Reactivity -- 2.2.3. Corrosivity -- 2.2.4. Ignitability -- 2.3. Hazardous waste management regulatory framework in India -- 2.4. Indian hazardous waste control regulations -- 3. Hazardous waste treatment methods -- 3.1. Physical treatment -- 3.1.1. Gravity separation -- 3.1.1.1. Sedimentation -- 3.1.1.2. Centrifugation -- 3.1.1.3. Flocculation -- 3.1.1.4. Dissolved air flotation -- 3.1.1.5. Heavy media separation -- 3.1.1.6. Macroencapsulation -- 3.1.1.7. Microencapsulation -- 3.1.1.8. Adsorption -- 3.1.1.9. Absorption -- 3.1.1.10. Precipitation -- 3.1.2. Phase change -- 3.1.2.1. Evaporation -- 3.1.2.2. Air stripping -- 3.1.2.3. Steam stripping -- 3.1.2.4. Distillation -- 3.1.3. Dissolution -- 3.1.3.1. Soil washing/flushing -- 3.1.3.2. Chelation -- 3.1.3.3. Liquid/liquid extraction -- 3.1.3.4. Supercritical solvent extraction -- 3.1.4. Size adsorptivity/ionic characteristics -- 3.1.4.1. Filtration -- 3.1.4.2. Carbon adsorption -- 3.1.4.3. Reverse osmosis -- 3.1.4.4. Ion exchange -- 3.1.4.5. Electrodialysis -- 3.2. Chemical treatment. , 3.2.1. Neutralization/precipitation -- 3.2.2. Oxidation and reduction -- 3.2.3. Hydrolysis -- 3.2.4. Photolysis -- 3.2.5. Chemical oxidation -- 3.3. Biological treatment -- 3.3.1. Aerobic degradation -- 3.3.2. Vermicomposting -- 3.3.3. Anaerobic digestion -- 3.4. Thermal treatment -- 3.4.1. Incineration -- 3.4.2. Thermoplastic stabilization -- 3.4.3. Sintering -- 3.4.4. Vitrification -- 4. Storage of hazardous waste -- 5. Disposal of hazardous waste -- 5.1. Aqueous organic treatment -- 5.2. Underground/deep well injection -- 5.3. Incineration -- 5.4. Surface impoundments -- 5.5. Waste piles -- 5.6. Land treatment units -- 5.7. Landfills -- 6. Technological advances -- 6.1. Thermal plasma technology -- 6.2. Bioremediation -- 6.3. Nanofiltration -- 7. Conclusion -- References -- Section 2: Waste management hierarchy -- Chapter 3: Source reduction, recycling, disposal, and treatment -- 1. Introduction -- 2. Source reduction of hazardous waste -- 3. Hazardous waste recycling -- 3.1. Reuse and recycle -- 3.2. Reformation -- 4. Hazardous waste disposal -- 4.1. Detoxification -- 4.2. Landfilling of hazardous waste -- 4.3. Hazardous waste surface impoundments -- 4.4. Waste piles -- 4.5. Ocean dumping of hazardous waste -- 4.6. Injection wells -- 4.7. Underground hazardous waste disposal -- 5. Treatment of hazardous waste -- 5.1. Chemical treatment methods -- 5.1.1. Chemical neutralization and precipitation -- 5.1.2. Hydroxide precipitation -- 5.1.3. Sulfide precipitation -- 5.1.4. Solidification and immobilization -- 5.2. Biological treatment methods -- 5.2.1. Aerobic and anaerobic treatment processes -- 5.2.2. Activated sludge and trickling filter treatment processes -- Biosorption or metabolism-independent process -- Bioaccumulation or metabolism-dependent process -- 5.2.3. Waste stabilization ponds -- 5.2.4. Rotating biocontactors. , 5.3. Thermal treatment method -- 5.3.1. Hazardous waste incinerators -- 5.3.2. Thermal treatment of hazardous waste -- 6. Conclusion and overview -- References -- Chapter 4: Measurement and practices for hazardous waste management -- 1. Introduction -- 1.1. Hazardous waste: Definition according to RCRA -- 1.2. Hazardous waste characteristics -- 1.3. Hazardous wastes list -- 1.4. Different mandatory regulatory measures of hazardous waste measurements -- 2. Hazardous waste measurement practices -- 2.1. Ignitability -- 2.1.1. Reference test methods of ignitability detection -- 2.1.2. Testing procedure -- 2.1.3. Sample storage and handling guidelines -- 2.2. Corrosivity of particular solid waste -- 2.3. Reactivity -- 2.4. Toxicity characteristic leaching procedure -- 2.5. Importance and requirement of waste characterization information -- 3. Minimizing waste generation by process modification and optimization -- 3.1. Process management -- 3.2. Life cycle assessment -- 3.3. Decision support system -- 3.4. Environmental impact assessment -- 4. Emerging technologies for hazardous waste treatment and disposal -- 4.1. Harmless disposal of hazardous solid waste -- 4.2. Hazardous waste categorization -- 4.3. Biological process for treatment of hazardous waste -- 4.3.1. Physicochemical treatment -- Methods for solid waste -- 5. Role of public and private sector organizations in promoting pollution management -- 5.1. Industry -- 5.2. Individual activeness -- 5.3. Role of educators -- 5.4. Role of different organizations of solid waste collection -- 6. International intervention of hazardous chemicals and waste management and their implementation -- 6.1. Basel convention 1981 -- 6.2. Rotterdam convention 1998 -- 6.3. Stockholm convention -- 6.4. London convention -- 6.5. Waigani convention 2001. , 6.6. International convention for the prevention of pollution of ships (MARPOL 73/78) -- 7. Conclusion -- References -- Further reading -- Chapter 5: Policies, issues, and major safety operations in the management of hazardous waste -- 1. Introduction to the hierarchy of the development of policies/acts/regulations to control hazardous wastes from the 20t ... -- 1.1. The Montreal protocol -- 2. US Environmental Protection Agency and hazardous waste management -- 2.1. Defining, identifying, and classifying hazardous waste -- 2.1.1. Definition-Hazardous waste -- 2.1.2. Identification and classification of hazardous waste -- 2.1.2.1. Generation of hazardous waste -- 2.1.2.2. Transportation of hazardous waste -- 2.1.2.3. Recycling, treatment, storage, and disposal of hazardous waste -- 2.2. Regulatory developments for management of hazardous wastes -- 2.2.1. Major requirements and regulations to be followed by hazardous waste generators -- 2.2.2. Regulations for specific wastes -- 2.2.3. Hazardous waste initiatives by the EPA -- 3. Occupational safety and health administration -- 3.1. Types of hazardous waste sites -- 3.2. Planning and organization of hazardous waste sites -- 3.2.1. OSHA's general reporting and record-keeping requirements -- 3.2.2. How to file a complaint regarding a hazardous workplace -- 3.3. Impact of OSHA in controlling hazardous waste management -- 4. The status of waste management in China -- 5. The status of waste management in the European Union -- 6. The Environmental (Protection) Act, 1986 of India -- 7. Some novel and noticed practices of hazardous waste management in other countries -- References -- Section 3: Hazardous waste characteristics and regulations -- Chapter 6: Hazardous waste characteristics and standard management approaches -- 1. Introduction -- 2. Hazardous waste -- 2.1. Definition. , 2.2. Sources or generators of hazardous waste -- 2.3. Classification of hazardous waste -- 2.4. Hazardous waste characteristics -- 2.4.1. Characteristics of ignitability -- 2.4.2. Characteristics of corrosivity -- 2.4.3. Characteristics of reactivity -- 2.4.4. Characteristics of toxicity -- 2.5. Listed hazardous waste -- 3. Environmental impacts of hazardous waste -- 3.1. Water contamination -- 3.2. Soil contamination -- 3.3. Air contamination -- 4. Waste minimization and pollution prevention -- 4.1. Source reduction -- 4.2. Product change -- 4.3. Recycling -- 4.4. Life cycle assessment -- 5. Hazardous waste transportation -- 6. Hazardous waste treatment -- 6.1. Physical treatment -- 6.2. Chemical treatment -- 6.3. Biological treatment -- 6.4. Thermal treatment -- 7. Waste disposal -- 7.1. Landfilling of hazardous waste material -- 7.2. Ocean dumping -- 8. Legislative frameworks -- 8.1. Responsibilities of the generator -- 8.2. Responsibilities of the state pollution control board -- 8.3. Responsibilities of state government -- 9. Future aspects of hazardous waste management -- 10. Conclusion -- References -- Chapter 7: Toxicity and hazardous waste regulations -- 1. Introduction -- 2. Criteria for determining hazardous waste -- 3. Hazardous waste storage -- 4. The problems that may result from the low efficiency of the solid waste system -- 5. Waste recycling -- 5.1. Stages of waste recycling -- 5.2. Means of collection for recycling waste -- 5.3. How to calculate recycling efficiency -- 6. Future vision -- 7. Conclusion -- References -- Section 4: Hazardous wastes management -- Chapter 8: Toxicity and related engineering and biological controls -- 1. Introduction -- 2. Toxicity of hazardous material -- 2.1. Health and environmental risks due to HW mismanagement -- 3. Global trends -- 4. Major sources of HW -- 4.1. Domestic HW. , 4.2. Industrial and commercial hazardous wastes.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: Sewage-Purification. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (392 pages)
    Edition: 1st ed.
    ISBN: 9780128183403
    Language: English
    Note: Cover -- Title Page -- Copyright -- Contents -- Contributors -- Chapter 1 - Water-related problem with special reference to global climate change in Brazil -- 1.1 - Overview of Brazilian water resources -- 1.2 - Major threats for conservation of Brazilian Amazonian water resources and aquatic biodiversity -- 1.2.1 - Industrial and domestic effluents -- 1.2.2 - Changes in land-use and deforestation -- 1.2.3 - Petroleum hydrocarbon -- 1.2.4 - Pesticides and herbicides -- 1.2.5 - Global climate changes -- Acknowledgments -- References -- Chapter 2 - Water-related problems with special reference to global climate change in Russia -- 2.1 - Introduction -- 2.2 - Water resources and anthropogenic impacts in Russia -- 2.3 - Climate change in Russia: trends and projections -- 2.4 - Impacts on water-related economic sectors -- 2.5 - Climatic risk management in Russia -- 2.6 - Conclusion -- References -- Chapter 3 - Water-related problem with special reference to global climate change in India -- 3.1 - Introduction -- 3.2 - Indian context on climate change and water -- 3.2.1 - Climate change and precipitation -- 3.2.2 - Climate change and Indian monsoon pattern -- 3.2.3 - Climate change and glaciers of Himalaya -- 3.2.4 - Climate change and groundwater resources -- 3.2.5 - Climate change and drought and flood -- 3.3 - Impact on agricultural economy -- 3.4 - Indian context on climate change and water policies -- 3.5 - Scientific simulation model for future prediction -- 3.5.1 - The Soil and Water Assessment Tool (SWAT) modeling -- 3.5.2 - General Circulation Model or Global Climate Model (GCM) -- 3.5.3 - Regional Climate Modeling (RCM) -- 3.5.4 - ClimGen -- 3.5.5 - Precipitation Runoff Modelling Systems (PRMS) -- 3.6 - Conclusion -- References -- Chapter 4 - Water-related problems with special reference to global climate change in China. , 4.1 - Global climate change and China's water resources status -- 4.1.1 - Global climate change and water vulnerability -- 4.1.2 - The status of China's water resources -- 4.1.3 - The research history of the impact of climate change on hydrology and water resources -- 4.2 - China's water problem in the context of climate change -- 4.2.1 - Climate change poses new challenges to China's solutions to the water problem -- 4.2.2 - The sensitivity of China's water systems to climate change -- 4.2.3 - Quantitative analysis of the impact of climate change on the measured runoff of typical rivers in China -- 4.3 - Quantitative evaluation of the vulnerability of China's water systems under climate change conditions -- 4.3.1 - The concept and understanding of water resources vulnerability -- 4.3.2 - Index system construction -- 4.3.3 - Evaluation method -- 4.3.4 - Evaluation conclusion -- 4.4 - Future climate change trends in China and adaptive countermeasures -- 4.4.1 - Possible future climate change trends -- 4.4.2 - Climate change adaptive countermeasures -- References -- Chapter 5 - Influence of global climate change on water resources in South Africa: toward an adaptive management approach -- 5.1 - Introduction -- 5.2 - State of water resources and their management in South Africa -- 5.2.1 - Water availability -- 5.3 - Water resource quality -- 5.3.1 - Microbial pollution -- 5.3.2 - Eutrophication -- 5.3.3 - Salinization -- 5.3.4 - Acid Mine Drainage (AMD) -- 5.4 - Potential climate change impacts on water resources in South Africa -- 5.4.1 - Impacts on surface water resources -- 5.4.2 - Impacts on groundwater resources -- 5.4.3 - Impacts on rainwater harvesting -- 5.5 - Water security and governance in face of climate change risks -- 5.5.1 - Transitions toward adaptive management of water in South Africa: sector-wide challenges and opportunities. , 5.5.2 - Potential technologies in adaptation of the water sector to climate change -- 5.5.3 - Climate smart agriculture -- 5.5.4 - Recycling and reuse strategies -- 5.5.5 - Desalination -- 5.5.6 - Role of governance in adaptation to climate change -- 5.6 - Conclusion -- References -- Chapter 6 - Recent trends and research strategies for treatment of water and wastewater in Russia -- 6.1 - Introduction -- 6.2 - Materials and methods -- 6.3 - The Russian water supply and sanitation sector: key trends and uncertainties -- 6.4 - Strategies for Russian water supply and sanitation companies -- 6.5 - Policy recommendations for the governance of water resources -- 6.6 - Conclusion -- Acknowledgments -- References -- Chapter 7 - Recent trends and research strategies for treatment of water and wastewater in India -- 7.1 - Introduction -- 7.2 - Water resources in India -- 7.2.1 - Water demand -- 7.2.2 - Water sources -- 7.2.3 - Water supply -- 7.3 - Water contaminants -- 7.4 - Water treatment technologies -- 7.4.1 - Thermal (heat-based) technologies -- 7.4.2 - Solar disinfection -- 7.4.3 - UV light technologies using lamps, including UV light-emitting diodes -- 7.4.4 - Coagulation-flocculation and/or sedimentation -- 7.4.5 - Chemical disinfection -- 7.4.5.1 - Chlorination -- 7.4.5.2 - Disinfection with iodine -- 7.4.5.3 - Ozone disinfection -- 7.4.5.4 - Disinfection by strong acids or bases -- 7.4.5.5 - Silver- and copper-based disinfectants -- 7.4.6 - Ion exchange -- 7.4.7 - Filtration -- 7.4.7.1 - Cloth filters -- 7.4.7.2 - Ceramic filters -- 7.4.7.3 - Granular media filters -- 7.4.7.4 - Carbon adsorption -- 7.4.7.5 - Ultrafiltration -- 7.4.7.6 - Nanofiltration -- 7.4.7.7 - Reverse osmosis -- 7.5 - Treatment of wastewater -- 7.5.1 - Primary treatment -- 7.5.1.1 - Screening -- 7.5.1.2 - Filtration -- 7.5.1.3 - Centrifugal separation. , 7.5.1.4 - Sedimentation and gravity separation -- 7.5.1.5 - Floatation -- 7.5.2 - Secondary treatment -- 7.5.2.1 - Aerobic decomposition -- 7.5.2.2 - Anaerobic decomposition -- 7.5.3 - Tertiary treatment -- 7.5.3.1 - Soil aquifer treatment -- 7.5.4 - Use of wastewater in agriculture and aquaculture -- 7.5.5 - Production of drinking water from wastewater -- 7.6 - Technological advances in water purification technologies -- 7.7 - Conclusion -- References -- Chapter 8 - Recent trends and research strategies for wastewater treatment in China -- 8.1 - A definition of wastewater and an overview of wastewater in China -- 8.1.1 - Definition of wastewater -- 8.1.2 - Types of wastewater treatment in China -- 8.1.3 - Commonly used methods in wastewater treatment -- 8.2 - Advances in wastewater treatment technology and research in China -- 8.2.1 - Process flow -- 8.2.2 - Sludge disposal -- 8.2.3 - Chlorination -- 8.2.4 - Phosphorus and nitrogen removal -- 8.3 - Methods and research progress in water treatment in different industries in China -- 8.3.1 - Industrial field -- 8.3.1.1 - Electroplating wastewater -- 8.3.1.2 - Heavy metal wastewater -- 8.3.1.3 - Grading -- 8.3.2 - Domestic water -- 8.3.3 - Environmental field -- 8.4 - Characteristics and experience of wastewater treatment in China -- 8.4.1 - Micro-electrolysis technology used in wastewater pretreatment -- 8.4.2 - Research on ceramic membranes: from organic membranes to inorganic membranes -- 8.4.3 - Combining water management and other administrative means to improve wastewater treatment efficiency -- 8.5 - Conclusion -- References -- Chapter 9 - Recent trends and national policies for water provision and wastewater treatment in South Africa -- 9.1 - Introduction -- 9.2 - The human right to water in South Africa -- 9.3 - Drinking water infrastructure in South Africa. , 9.4 - Water services regulation framework in South Africa -- 9.5 - Blue Drop Certification scheme -- 9.6 - Overview of wastewater treatment facilities in South Africa -- 9.7 - Wastewater reuse in South Africa -- 9.8 - Conclusion -- References -- Chapter 10 - Government initiative and policies on water conservation and wastewater treatment in Brazil -- 10.1 - Introduction -- 10.2 - Historical and legal framework -- 10.3 - National Policy of Water Resources - PNRH -- 10.3.1 - Water resources plans -- 10.3.2 - Framing of water bodies in classes of prevailing uses -- 10.3.3 - Granting of rights to use water resources -- 10.3.4 - Charge for the use of water resources -- 10.3.5 - National Information System on Water Resources -- 10.4 - Administrative aspects -- 10.5 - Additional government initiatives -- References -- Chapter 11 - Government initiative and policies on water conservation and wastewater treatment in Russia -- 11.1 - Introduction -- 11.2 - Materials and methods -- 11.3 - Water infrastructure state and environmental issues -- 11.4 - National regulation -- 11.5 - Water supply and sanitation infrastructure management system -- 11.6 - Tariff policy and financial standing of enterprises -- 11.7 - Water meters -- 11.8 - Mechanisms of public private partnership -- 11.9 - Is it possible to increase tariffs? -- 11.10 - Are there alternatives to unitary enterprises and concession? -- 11.11 - Conclusion -- Acknowledgments -- Legislative and normative acts -- Chapter 12 - The role of sustainable decentralized technologies in wastewater treatment and reuse in subtropical Indian con... -- 12.1 - Introduction -- 12.2 - Decentralized wastewater treatment: Case studies -- 12.2.1 - Constructed wetlands -- 12.2.2 - Rooftop wastewater treatment gardens -- 12.2.3 - Zero liquid discharge technology for industry -- 12.3 - Conclusion -- References. , Chapter 13 - An exploration of China's practices in water conservation and water resources management.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Plastics. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (320 pages)
    Edition: 1st ed.
    ISBN: 9781119800873
    DDC: 363.738
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 Sources, Occurrence, and Analysis of Microplastics in Freshwater Environments: A Review -- 1.1 Introduction -- 1.2 Sources of Microplastic -- 1.2.1 Primary Sources -- 1.2.1.1 Microplastics from Personal Care Products -- 1.2.1.2 Microplastics from Plastic Resins -- 1.2.2 Secondary Sources -- 1.2.2.1 Microplastics from Degradation of Plastic Debris -- 1.2.2.2 Microplastics from Textile and Domestic Washing -- 1.3 Pathways of Microplastics into Freshwater Environments -- 1.4 Microplastic Analytical Methods in Freshwater -- 1.4.1 Sampling of Microplastic -- 1.4.1.1 Water Samples -- 1.4.1.2 Sediment Samples -- 1.4.2 Sample Preparation -- 1.4.2.1 Extraction of Microplastics -- 1.4.2.2 Removal of Organic Debris -- 1.4.3 Identification of Microplastic -- 1.4.3.1 Visual Sorting -- 1.4.3.2 Identification of Microplastics by Chemical Composition -- 1.5 Occurrence of Microplastic in Freshwater Environments -- 1.5.1 Microplastic in Lakes -- 1.5.2 Microplastic in Rivers -- 1.6 Conclusions and Recommendations -- Acknowledgments -- References -- Chapter 2 Microplastics in Freshwater Environments - With Special Focus on the Indian Scenario -- 2.1 Introduction -- 2.2 The Nature and Production of Microplastics -- 2.3 Global Ecological Impacts of Plastic Pollution -- 2.4 Socio-Economic Impacts of Plastic Pollution -- 2.5 Freshwater Plastic Pollution -- 2.5.1 Sources of Freshwater Microplastics -- 2.5.2 Studies on Freshwater Plastic Pollution from around the World -- 2.5.3 The Problem of Freshwater Microplastics in Developing Countries -- 2.5.4 Status of India's Freshwater Plastic Problem -- 2.6 Conclusion and Future Prospects -- References -- Chapter 3 Microplastic Contamination in the Marine Food Web: : Its Impact on Human Health -- 3.1 Introduction. , 3.1.1 Microplastic in the Marine Food Web -- 3.1.2 Toxic Impacts on Primary Producers -- 3.1.3 Toxic Impacts on Consumers -- 3.1.4 Associated Risk -- 3.2 Human Health Implication -- 3.3 Conclusion and Future Perspective -- Acknowledgements -- References -- Chapter 4 Microplastic in the Aquatic Ecosystem and Human Health Implications -- 4.1 Introduction -- 4.2 Sources and Food-Chain Entry -- 4.3 Human Health Implications -- 4.3.1 Digestive System -- 4.3.2 Respiratory System -- 4.3.3 Nervous System -- 4.3.4 Placental Barrier -- 4.3.5 Other Health Impacts -- 4.4 Future Directions and Plausible Solutions -- 4.5 Conclusion -- References -- Chapter 5 Interactions of Microplastics Toward an Ecological Risk in Soil Diversity: An Appraisal -- 5.1 Introduction -- 5.2 Microplastic-Types and Properties -- 5.3 Microplastic Sources and Accumulation in Soil and Sediments -- 5.4 Migration of Microplastics' Fate in Environment -- 5.5 Migration of Microplastics through Soil -- 5.6 Soil Analysis Methodology -- 5.7 Collection of Samples -- 5.8 Sample Preparation -- 5.8.1 Drying -- 5.8.2 Sieving -- 5.8.3 Soil Aggregates Dismantling and Density Separation -- 5.8.4 Removing Soil Organic Matter (SOM) -- 5.8.5.1 Microscopy -- 5.8.5.2 Spectroscopy -- 5.8.5.3 Thermoanalysis -- 5.8.5 Microplastics Quantification -- 5.9 Interactions and Impacts on Soil Diversity -- 5.9.1 Soil Properties -- 5.9.2 Soil Microbial Activity -- 5.9.3 Microplastics Entered Via Food Chains -- 5.9.4 The Effect of MPs on Soil Animals -- 5.9.5 The Effect of MPs on Plants -- 5.10 Ecotoxicology of Microplastic -- 5.11 Mitigation Process of Microplastics -- 5.11.1 Biological Methods -- 5.12 Conclusion and Future Perspectives -- References -- Chapter 6 Microplastics in the Air and Their Associated Health Impacts -- 6.1 Introduction -- 6.2 Microplastics in the Atmosphere -- 6.2.1 Physical Characteristics. , 6.2.2 Chemical Characteristics -- 6.2.3 Sources and Generation -- 6.2.4 Fate and Dispersion -- 6.3 Measurement of Atmospheric Microplastics -- 6.3.1 Sampling and Analysis -- 6.3.2 Atmospheric Abundance of Microplastics -- 6.4 Health Impacts of Microplastics -- 6.4.1 Routes of Exposure and Interaction with Body Tissues -- 6.4.2 Health Impacts -- 6.5 Conclusions and Future Perspectives -- References -- Chapter 7 Plastic Marine Litter in the Southern and Eastern Mediterranean Sea: Current Research Trends and Management Strategies -- 7.1 Introduction -- 7.2 Analysis of Marine Litter Research Trends in the Southern and Eastern Mediterranean Sea Countries -- 7.3 Microplastics Abundance in the Marine Environment of the Southern and Eastern Mediterranean Countries -- 7.4 Microplastics Characterization and Identification Techniques -- 7.5 Microplastics in Coastal Areas Affected by Rivers -- 7.6 Socioeconomic Impact of Plastic Marine Litter and Reduction Approaches -- 7.7 Knowledge Gaps and Recommendation for Future Research -- References -- Chapter 8 Advanced Detection Techniques for Microplastics in Different Environmental Media -- 8.1 Introduction -- 8.2 Methodology -- 8.2.1 Selection of Criteria and Search for Articles -- 8.2.2 Item Selection -- 8.3 Results -- 8.3.1 Sampling Techniques in Different Marine Environments -- 8.3.1.1 Seawater -- 8.3.1.2 Sea Sediments -- 8.3.1.3 Beaches -- 8.3.1.4 Mangroves -- 8.3.1.5 Marine Fauna -- 8.3.1.6 Marine Vegetation -- 8.3.2 Sample Processing in Laboratory -- 8.3.2.1 Water -- 8.3.2.2 Sediments -- 8.3.2.3 Marine Fauna -- 8.3.2.4 Marine Vegetation -- 8.4 Conclusions and Future Perspectives -- References -- Chapter 9 Bio-Based and Biodegradable Plastics as Alternatives to Conventional Plastics -- 9.1 Introduction -- 9.2 Definition and Classification of Plastics. , 9.3 Current Status of Conventional Plastics and Effect on Environment -- 9.4 Advantages and Disadvantages of Conventional Plastics -- 9.4.1 Advantages -- 9.4.2 Disadvantages -- 9.5 Current Status of Biodegradable Plastics and Effect on Environment -- 9.6 How Plastic Degrades -- 9.7 Advantages and Disadvantages of Bio-Based Plastics -- 9.8 National and International Agreements and Conventions to Control Use of Plastics -- 9.9 The Future of Plastics -- 9.10 Conclusions -- References -- Chapter 10 Biodegradable Plastics: New Challenges and Possibilities toward Green Sustainable Development -- 10.1 Introduction -- 10.1.1 The Environmental Impact of Conventional Plastics -- 10.1.2 Classification and Types of Biopolymers -- 10.2 Biopolymers of Microbial Systems -- 10.2.1 Microbial Polyesters: Polyhydroxyalkanoates -- 10.2.2 Recombinant Protein Polymers -- 10.2.3 The Microbial Polysaccharides -- 10.2.3.1 Bacterial Cellulose -- 10.2.3.2 Xanthan -- 10.2.3.3 Dextrans: Phullan and Glucans -- 10.3 Biopolymers of Plants and Higher Organisms -- 10.3.1 Starch -- 10.3.2 Cellulose -- 10.3.3 Lignin -- 10.3.4 Chitin and Chitosan -- 10.3.5 Polylactic Acid -- 10.3.5.1 Properties of PLA -- 10.3.5.2 Improvements in PLA -- 10.3.5.3 Application -- 10.4 Factors Affecting the Rate of Degradation of Bio-plastics and Biodegradable Plastics -- 10.5 Future Aspects and Challenges for Development of Bio-based and Biodegradable Plastics -- 10.6 Conclusions -- Acknowledgement -- References -- Chapter 11 Current Trends, Challenges, and Opportunities for Plastic Recycling -- 11.1 Introduction: The Pollution Problem Involving Plastic -- 11.2 Sources, Types, and Transportation of Plastics in the Environment -- 11.2.1 Plastics Sources and Types -- 11.2.2 Plastic Transportation in Aquatic Environments -- 11.3 An Introduction to Waste Management -- 11.3.1 Plastic Waste Treatment. , 11.4 Plastic Recycling Systems -- 11.4.1 Recovery -- 11.4.2 Preparation -- 11.4.3 Primary Recycling -- 11.4.4 Energy Recovery -- 11.4.5 Mechanical Recycling -- 11.4.5.1 Sorting/Separating -- 11.4.5.2 Electrostatic Separation -- 11.4.5.3 Manual Sorting -- 11.4.5.4 Sink Float Method -- 11.4.5.5 Plastic Identification -- 11.4.5.6 Shredding -- 11.4.5.7 Agglomeration -- 11.4.5.8 Washing/Cleaning -- 11.4.6 Chemical Recycling of Solid Plastic Pollutants -- 11.4.7 Reuse and Re-stabilization -- 11.5 Latest Industry Trends and a Future Perspective -- 11.6 Conclusions -- References -- Chapter 12 Microbial Degradation of Micro-Plastics -- 12.1 Introduction -- 12.2 Plastic Categorization Based on Biodegradability -- 12.2.1 Non-biodegradable Plastics -- 12.2.2 Biodegradable Plastics -- 12.2.3 Biosynthetic Plastics -- 12.2.4 Blended Plastics -- 12.2.5 Biocomposite Polymers -- 12.3 Microplastics Cycling into the Environment -- 12.4 Microorganisms and Interactions with Microplastics -- 12.5 Factors Affecting Biodegradation of Microplastics -- 12.6 Mechanisms of Microplastic Biodegradation -- 12.7 Conclusion and Future Perspectives -- References -- Chapter 13 Life Cycle Assessment (LCA) of Plastics -- 13.1 Introduction -- 13.2 Plastics -- 13.2.1 Types of Plastics -- 13.2.2 Plastic Bags -- 13.2.3 Plastic Waste -- 13.2.4 Recycling and Disposal -- 13.2.5 Indian Scenario -- 13.3 Life Cycle Assessment (LCA) -- 13.3.1 Phases of LCA -- 13.3.1.1 Goal and Scope Definition -- 13.3.1.2 Inventory Analysis -- 13.3.1.3 Impact Assessment -- 13.3.1.4 Interpretation -- 13.3.2 Importance of LCA -- 13.3.3 LCA for Plastics -- 13.4 Plastics Sustainability by LCA -- 13.5 Discussion and Conclusion -- References -- Chapter 14 Role of Education and Society in Dealing Plastic Pollution in the Future -- 14.1 Introduction -- 14.2 Consumption -- 14.3 Global Dimension of Plastic Pollution. , 14.4 Plastic Pollution in Natural Environments.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Pollution prevention. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (380 pages)
    Edition: 1st ed.
    ISBN: 9780128180969
    DDC: 363.737
    Language: English
    Note: Front Cover -- ABATEMENT OF ENVIRONMENTAL POLLUTANTS -- ABATEMENT OF ENVIRONMENTAL POLLUTANTS -- Copyright -- Contents -- Contributors -- 1 - Bioremediation: a sustainable approach for management of environmental contaminants -- 1. Introduction -- 2. Application of bioremediation for environmental pollutants cleanup -- 2.1 Bioremediation strategy for hydrocarbon contaminated water and soil -- 2.2 Bioremediation of heavy metal contaminated water -- 2.3 Bioremediation of dye contaminated water -- 2.3.1 Bioremediation approaches used for dye degradation -- 2.3.1.1 Aerobic treatment -- 2.3.1.2 Anaerobic treatment -- 2.3.1.3 Anoxic treatment -- 2.3.1.4 Sequential degradation of dyes -- 2.4 Vermi-biofiltration of wastewater -- 2.5 Bioremediation of pesticide contamination -- 2.6 Removal of pharmaceutical and personal care products by biological degradation processes -- 2.6.1 Pure cultures -- 2.6.2 Mixed cultures -- 2.6.3 Activated sludge process -- 2.7 Vermicomposting of solid wastes -- 2.8 Genetically engineered microorganism-based bioremediation -- 2.9 Factors affecting bioremediation with emphasis on petrochemical and other organic pollutants -- 2.10 Concentration of pollutant -- 2.11 Nutrients availability -- 2.12 Microbial adaptation (acclimatization) -- 2.13 Bioavailability -- 2.14 Effect of environmental conditions -- 2.14.1 Temperature -- 2.14.2 pH -- 2.14.3 Oxygen availability -- 3. Conclusion -- References -- 2 - Pollution status and biodegradation of organophosphate pesticides in the environment -- 1. Introduction -- 2. Organophosphates and other pesticides -- 3. Effect of pesticides -- 3.1 Effects on human health -- 3.1.1 Acute effect -- 3.1.2 Chronic effect -- 3.2 Environmental impact -- 3.3 Impact on nontarget organisms -- 3.4 Effects on the microbial diversity of soil -- 3.5 Pesticide resistance. , 4. Toxicological mechanism of organophosphates -- 5. Status of organophosphate pesticide pollution -- 6. Degradation of organophosphate pesticides -- 7. Conclusion -- References -- 3 - Recent trends in the detection and degradation of organic pollutants -- 1. Introduction -- 2. Persistent organic pollutants: health effects and environmental chemistry -- 3. Method of POPs analysis (soil and water) -- 3.1 Samples collection, extraction, storage, and preparation -- 3.2 Conventional techniques -- 3.3 Analytical techniques for POPs quantification -- 3.3.1 UV-Vis spectroscopy -- 3.3.2 Surface-enhanced Raman scattering -- 4. Methods for POPs degradation -- 4.1 Biological -- 4.1.1 Microbial degradation -- 4.1.1.1 Bacterial degradation -- 4.1.1.2 Fungal degradation -- 4.2 Chemical -- 4.3 Advanced oxidation approaches -- 5. Conclusions -- Acknowledgments -- References -- 4 - Phytoremediation of organic pollutants: current status and future directions -- 1. Introduction -- 2. The process of phytoremediation -- 3. Physiological and biochemical aspects of phytoremediation -- 4. Strategies of phytoremediation of organic pollutants -- 4.1 Direct uptake (direct phytoremediation) -- 4.2 Phytoremediation explanta -- 5. Role of enzymes -- 6. Role of plant-associated microflora -- 7. Fate and transport of organic contaminants in phytoremediation -- 8. Genetically engineered organisms for phytoremediation -- 9. Research and development in phytoremediation -- 9.1 Current status -- 9.2 Biotechnological approaches -- 9.3 Protein engineering -- 10. Advantages and limitations of phytoremediation -- 11. Emerging challenges to phytoremediation -- 12. Conclusion -- Acknowledgments -- References -- Further reading -- 5 - Bioremediation of dyes from textile and dye manufacturing industry effluent -- 1. Introduction -- 2. Importance of characterization of dye-containing wastewater. , 3. Factors affecting biological removal of textile dyes -- 4. Microorganisms and mechanism involved in dye bioremediation process -- 4.1 Bacteria -- 4.2 Fungi -- 4.3 Algae -- 5. Application of enzymes as biocatalyst in dye bioremediation -- 5.1 Immobilization of biological catalysts -- 5.2 Potential of biocatalysts for reusability -- 6. Advancements in bioreactor systems for dye remediation -- 7. Treatment of dye-containing industrial effluents using genetically modified microorganisms or enzymes -- 8. Current status of bioreactor application in CETPs of industrial areas for dye removal -- 9. Microbial fuel cell: a novel system for the remediation of colored wastewater -- 9.1 Microorganisms used in microbial fuel cells -- 9.2 Microbial fuel cell configuration and operation -- 10. Potential of constructed wetlands for the treatment of dye-contaminated effluents -- 11. Conclusion and suggestions -- References -- 6 - Mycoremediation of polycyclic aromatic hydrocarbons -- 1. Introduction -- 1.1 PAHs: environmental concern -- 1.2 Effect of PAHs exposure on environment and human health -- 1.3 Bioremediation approach -- 2. Mycoremediation: intact potential -- 2.1 Ligninolytic fungi -- 2.2 Nonligninolytic fungi -- 3. Major enzymes -- 3.1 Hydrolases -- 3.1.1 Proteases -- 3.1.2 Cellulases -- 3.1.3 Lipases -- 3.2 Versatile peroxidases -- 3.3 Ligninolytic enzymes -- 3.3.1 Laccase -- 3.3.2 Heme peroxidases -- 4. Biosurfactant production by fungi and its application in bioremediation -- 5. Factors affecting growth of fungi -- 5.1 Temperature -- 5.2 Humidity -- 5.3 pH -- 5.4 Light -- 5.5 Trace elements -- 5.6 Aeration -- 6. Conclusion and future perspective -- References -- Further reading -- 7 - Plant growth-promoting rhizobacteria and their functional role in salinity stress management -- 1. Introduction -- 2. Plant growth-promoting rhizobacteria. , 3. Plant growth-promoting rhizobacteria in salinity stress -- 3.1 Functional aspects of PGPR under salt stress -- 4. PGPR and ACC deaminase activity -- 5. Conclusion -- References -- Further reading -- 8 - Plant growth-promoting bacteria and their role in environmental management -- 1. Introduction -- 2. Plant growth-promoting bacteria -- 3. Xenobiotic compounds and their classification -- 4. Effect of xenobiotics on the health of human beings -- 5. Effects of xenobiotics on the plant growth -- 5.1 Plant growth-promoting bacteria in bioremediation -- 5.2 Plant growth-promoting bacteria mechanism of xenobiotics degradation -- 5.3 Microbial degradation of xenobiotic compounds -- 6. Future prospective -- Acknowledgments -- References -- Further reading -- 9 - Fungi as potential candidates for bioremediation -- 1. Introduction -- 1.1 Fungal enzymes for bioremediation -- 1.1.1 Extracellular oxidoreductases -- 1.2 Cell-bound enzymes -- 1.3 Transferases -- 2. Fungal bioremediation -- 2.1 Toxic recalcitrant compound -- 2.2 Heavy metal -- 2.3 Municipal solid waste -- 3. Fungi in bioremediation -- 3.1 White-rot fungi -- 3.2 Marine fungi -- 3.3 Extremophilic fungi -- 3.4 Symbiotic association of fungi with plants and bacteria -- 4. Technology advancement -- 4.1 Conclusions and future prospective -- References -- 10 - Cyanobacteria: potential and role for environmental remediation -- 1. Introduction -- 1.1 General features of cyanobacteria -- 1.2 Role of cyanobacteria in agriculture management -- 1.3 The cyanobacterial potential in environmental development -- 1.4 Cyanobacteria: role in bioremediation -- 2. Conclusions and future perspectives -- Acknowledgments -- References -- Further reading -- 11 - An effective approach for the degradation of phenolic waste: phenols and cresols -- 1. Introduction -- 1.1 Cresol production. , 1.2 Adverse effects of phenols and cresols on the environment and human health -- 2. Treatment technologies for phenolic compound removal -- 2.1 Physical method -- 2.2 Chemical method -- 2.3 Biological method -- 2.3.1 Bacteria -- 2.3.2 Biodegradation mechanism -- 2.3.3 Aerobic degradation of phenolic waste -- 2.3.4 Anaerobic degradation of phenolic waste -- 2.3.5 Fungi biodegradation -- 2.3.6 Enzymes participating in degradation of phenolic compounds -- 2.3.7 Biosurfactants -- 2.3.8 Genetically modified bacteria -- 3. Factors influencing bioremediation of phenolic waste -- 3.1 Temperature -- 3.2 Nutrient availability -- 3.3 Effect of pH on phenol degradation potential -- 3.4 Effect of additional carbon sources on phenol degradation potential -- 3.5 Effect of dissolved oxygen concentration on phenol degradation potential -- 3.6 Microbial growth kinetics -- 4. Limitations of biodegradation -- 5. Photocatalytic degradation -- 5.1 Photo catalyst and its description -- 5.2 Mechanism of TiO2 in photocatalytic degradation of phenolic compounds -- 6. Factors affecting photocatalytic degradation of TiO2 -- 6.1 Light intensity -- 6.2 Reaction temperature -- 6.3 Catalyst loading -- 6.4 pH of solution -- 6.5 Inorganic ions -- 6.6 Conclusion -- Acknowledgments -- References -- 12 - Environmental fate of organic pollutants and effect on human health -- 1. Introduction -- 1.1 Persistent organic pollutants -- 1.2 General characteristics of persistent organic pollutants -- 1.3 Sources of persistent organic pollutants -- 2. Types of persistent organic pollutants -- 2.1 Pesticides -- 2.1.1 Dichlorodiphenyltrichloroethane -- 2.1.2 Aldrin -- 2.1.3 Chlordane -- 2.1.4 Heptachlor -- 2.1.5 Endrin -- 2.1.6 Mirex -- 2.2 Industrial chemicals -- 2.2.1 Polychlorinated biphenyls -- 2.2.2 Hexachlorobenzene -- 2.2.3 Hexachlorobutadiene -- 2.2.4 Short-chain chlorinated paraffins. , 2.3 Industrial by-products.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Water-Pollution. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (449 pages)
    Edition: 1st ed.
    ISBN: 9781119693673
    DDC: 363.7394
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Part I Water Pollution and Its Security -- Chapter 1 Water Security and Human Health in Relation to Climate ChangeAn Indian Perspective -- 1.1 Introduction -- 1.2 Quantity of Available Water Resources in India -- 1.3 Quality of Available Water Resources in India -- 1.4 The Impact of Climate Change on the Quantity of Water Resources -- 1.5 Impact of Climate Change on the Quality of Water Resources -- 1.6 The Health Perspective in Association with Water Security and Climate Change -- 1.7 Major Challenges to Water Security -- 1.8 Government Initiatives to Ensure Water Security -- 1.9 Managing Water Resources Under Climate Change -- 1.10 Conclusion and Recommendations -- References -- Chapter 2 Assessment of Anthropogenic Pressure and Population Attitude for the Conservation of Kanwar Wetland, Begusarai, India: A Case Study -- 2.1 Introduction -- 2.2 Materials and Method -- 2.3 Results -- 2.4 Discussion -- 2.5 Conclusion -- References -- Chapter 3 Grossly Polluting Industries and Their Effect on Water Resources in India -- 3.1 Introduction -- 3.2 Industrialization in India -- 3.3 Categorization of Industries -- 3.4 Criteria for Determination of Grossly Polluting Industries -- 3.5 Different Type of Grossly Polluting Industries and their Impact on Water Bodies -- 3.6 Major Water Body Pollution Due to Grossly Polluting Industries -- 3.7 Environmental Infrastructure in Grossly Polluting Industries and its Performance -- 3.8 Challenges Faced in Industrial Water Regulations -- 3.9 Conclusion -- References -- Part II Phytoremediation of Water Pollution -- Chapter 4 Phytoremediation: Status and Outlook -- 4.1 Introduction -- 4.2 The Status of Heavy Metal Pollution: Global and Indian Scenarios -- 4.3 Status of Phytoremediation -- 4.4 Metal Hyperaccumulators for Phytoremediation. , 4.5 Advancements in Techniques for the Improvement of the Phytoremediation Ability in Plants and the Status of Genetically Modified Organisms -- 4.6 Physiological Mechanisms for the Sequestration of Metals -- 4.7 Socio-Economic Costs and Benefits of Phytoremediation -- 4.8 Conclusion and Recommendations -- References -- Chapter 5 Phytoremediation of Heavy Metals from the Biosphere Perspective and Solutions -- 5.1 Introduction -- 5.2 Heavy Metals -- 5.3 Heavy Metals in Air -- 5.4 Heavy Metals: Problems and Harmful Effects -- 5.5 Remediation of Heavy Metals: Need and Conventional Treatments -- 5.6 Conventional Remedial Techniques: Challenges -- 5.7 Metal Hyperaccumulators: Scope of Phytoremediation -- 5.8 Advantages and Limitations of Phytoremediation -- 5.9 Useful Plants -- 5.10 Conclusion -- References -- Chapter 6 Phytoremediation for Heavy Metal RemovalTechnological Advancements -- 6.1 Introduction -- 6.2 Phytoremediation -- 6.3 Bamboo (Bambusa vulgaris) -- 6.4 Mustard (Brassica juncea) -- 6.5 Rhizobacteria -- 6.6 Seagrass -- 6.7 Sunflower (Helianthus annuus) -- 6.8 Water Hyacinth (Eichhornia crassipes Mart) -- 6.9 Willow (Salix alba L.) -- 6.10 Description of Heavy Metal Removal from Water -- 6.11 Conclusion and Future Research Recommendations -- References -- Part III Microbial Remediation of Water Pollution -- Chapter 7 Advances in Biological Techniques for Remediation of Heavy Metals Leached from a Fly Ash Contaminated Ecosphere -- 7.1 Introduction -- 7.2 Status of Fly Ash Heavy Metals: Composition and Remediation -- 7.3 Treatment of Fly Ash Heavy Metal Contaminated Ecospheres -- 7.4 Case Study of Gandhinagar Thermal Power Plant, Gandhinagar, India -- 7.5 Conclusion and Future Prospectives -- References -- Chapter 8 Microbial Degradation of Organic Contaminantsin Water Bodies: Technological Advancements -- 8.1 Organic Contaminants in Water. , 8.2 Treatment of Organic Contaminants Using Microbes -- 8.3 The Process Design for Microbial Treatment -- 8.4 Future Prospects -- 8.5 Conclusion -- Abbreviations Used -- References -- Chapter 9 The Fate of Organic Pollutants and Their Microbial Degradation in Water Bodies -- 9.1 Introduction -- 9.2 Classification of Organic Pollutants in the Environment -- 9.3 Organic Contaminants in Water and Their Sources -- 9.4 Effects of Organic Pollutants on Aquatic Ecosystems -- 9.5 The Fate of Organic Pollutants in Natural Water Bodies -- 9.6 Microbial Enzymes in the Degradation of Organic Pollutants -- 9.7 Approaches for Organic Pollutant Bioremediation -- 9.8 Microbial Bioaccumulation of Organic Pollutant in Water Bodies -- 9.9 Factors Affecting Microbial Degradation -- 9.10 Conclusion and Future Recommendations -- References -- Part IV Removal of Water Pollutants by Nanotechnology -- Chapter 10 Detection and Removal of Heavy Metals from Wastewater Using Nanomaterials -- 10.1 Introduction -- 10.2 Sources of Heavy Metals in Wastewater -- 10.3 Toxicity of Heavy Metals Concerning Human Health and Environment -- 10.4 Role of Nanomaterials in the Removal of Heavy Metals -- 10.5 Different Types of Nanoadsorbents -- 10.6 Comparison of Adsorption Capacities of Various Heavy Metal Ions by Nanomaterials and Conventional Methods -- 10.7 Conclusion and Future Trends -- Acknowledgments -- Conflict of Interest -- References -- Chapter 11 Spinel Ferrite Magnetic Nanoparticles: An Alternative for Wastewater Treatment -- 11.1 Introduction -- 11.2 Spinel Ferrite Nanoparticles -- 11.3 Synthesis of Spinel Ferrite Magnetic Nanoparticles -- 11.4 Adsorption and Photocatalytic Degradation Mechanisms -- 11.5 Recovery and Reuse -- 11.6 Future Perspectives -- 11.7 Conclusion -- References. , Chapter 12 Biocompatible Cellulose-Based Sorbents for Potential Application in Heavy Metal Ion Removal from Wastewater -- 12.1 Introduction -- 12.2 Heavy Metal Ions as Pollutants -- 12.3 Cellulose as Biosorbents: Fundamentals to the Mechanistic Approach -- 12.4 Modification of Cellulose -- 12.5 Removal of Various HMi -- 12.6 Adsorption and Kinetic Studies -- 12.7 The Role of Thermodynamics -- 12.8 Prospects Toward Sustainability -- 12.9 Summary -- References -- Part V Advances in Remediation of Water Pollution -- Chapter 13 Advances in Membrane Technology Used in the Wastewater Treatment Process -- 13.1 Introduction -- 13.2 Membrane Technologies for Wastewater Treatment -- 13.3 Advancements in Membrane Technology for Wastewater Treatment -- 13.4 Conclusions -- References -- Chapter 14 Occurrence, Fate, and Remediation of Arsenic -- 14.1 Introduction -- 14.2 Sources of Arsenic Contamination in the Environment -- 14.3 Health Effects of Arsenic Toxicity -- 14.4 Remediation Techniques for Arsenic Contamination -- 14.5 Coagulation and Flocculation -- 14.6 Bioremediation for the Treatment of Arsenic -- 14.7 The Fate of Arsenic in the Environment -- 14.8 Conclusion -- References -- Chapter 15 Physical and Chemical Methods for Heavy Metal Removal -- 15.1 Introduction -- 15.2 Toxicity of Heavy Metals -- 15.3 Methods -- 15.4 Chemical Methods for Heavy Metal Removal -- 15.5 Conclusion -- References -- Part VI Policy Dimensions on Water Security -- Chapter 16 The Role of Government and the Public in Water Resource Management in India -- 16.1 Introduction -- 16.2 Distribution of Water in India -- 16.3 Challenges in Water Resource Management -- 16.4 Traditional Ways of Water Resource Management in India -- 16.5 Present Management Measures -- 16.6 The Role of the Public in Water Resource Management -- 16.7 Recommendations and Conclusion -- References. , Web References/Online Sources -- Index -- EULA.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Water conservation. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (472 pages)
    Edition: 1st ed.
    ISBN: 9780128203941
    DDC: 333.9116
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Energy development. ; Energy policy. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (349 pages)
    Edition: 1st ed.
    ISBN: 9781119741510
    DDC: 333.794
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- List of Contributors -- Chapter 1 Energy Crisis and Climate Change: Global Concerns and Their Solutions -- 1.1 Introduction -- 1.2 Energy Crisis -- 1.3 Role of Renewable Energy in Sustainable Development -- 1.4 Climate Change and Energy Crisis -- 1.5 Climate Change -- 1.5.1 Environmental and Social Consequences of Climate Change -- 1.5.2 Process and Causes of Global Warming -- 1.6 Cleaner Alternatives to Coal to Alleviate Climate Change -- 1.6.1 Carbon Sequestering and Clean Coal -- 1.6.2 Natural Gas and Nuclear Energy -- 1.6.3 Hydrogen -- 1.7 Climate Change and Energy Demand -- 1.8 Mitigation Measures for the Energy Crisis and Global Warming: Reduce Emissions of Greenhouse Gases (IPCC) -- 1.9 Conclusion -- 1.10 Future Considerations -- References -- Chapter 2 Advances in Alternative Sources of Energy: Opening New Doors for Energy Sustainability -- 2.1 Introduction -- 2.2 Need of Novel Research in Alternative Sources of Energy -- 2.3 Recent Advances in Renewable Sources of Energy -- 2.3.1 Solar Energy -- 2.3.2 Wind Energy -- 2.3.3 Hydropower -- 2.3.4 Geothermal Energy -- 2.3.5 Bioenergy -- 2.3.6 Ocean Energy -- 2.4 Future Fuel: Hydrogen -- 2.4.1 Hydrogen Production Methods Using Renewable Sources -- 2.5 Challenges -- 2.5.1 Efficiency -- 2.5.2 Large-Scale Production -- 2.5.3 Cost-Effective Production -- 2.6 Future: Alternative Sources of Energy -- 2.7 Conclusions -- References -- Chapter 3 Recent Advances in Alternative Sources of Energy -- 3.1 Introduction -- 3.2 Different Innovations Employed in Major Types of Alternative Sources of Energy -- 3.2.1 Solar Energy (Semiconductor Technology to Harness Solar Power) -- 3.2.2 Hydropower -- 3.2.3 Wind Energy -- 3.2.4 Geothermal Energy -- 3.2.5 Biomass Energy -- 3.2.6 Hydrogen as a Fuel -- 3.3 Environmental Impacts -- 3.4 Future Prospects. , 3.5 Conclusions -- References -- Chapter 4 Energy and Development in the Twenty-First Century - A Road Towards a Sustainable Future: An Indian Perspective -- 4.1 Introduction -- 4.2 Energy Consumption and Economic Development -- 4.3 Environmental Issues - A Corollary of Economic Development -- 4.4 Air Quality - Deterioration Leading to Development of another Mars -- 4.5 Carbon Footprints - Gift of Mankind to Mother Earth -- 4.6 Sustainable Development -- 4.6.1 Problems Faced by the Country in Implementing Sustainable Development Goals (SDGs) -- 4.6.2 Paris Accord -- 4.6.3 Steps Taken by India to Reduce the Carbon Emission -- 4.7 Coronavirus Pandemic and its Impact on the Carbon Emission -- 4.8 Conclusion -- References -- Chapter 5 Energy Development as a Driver of Economic Growth: Evidence from Developing Nations -- 5.1 Introduction -- 5.2 Energy and Economic Development -- 5.2.1 The Impact of Economic Development on Energy -- 5.2.2 Economic Development and Fluctuations in Energy Consumption -- 5.2.3 Energy Consumption in Developing Nations -- 5.2.4 The Price of Energy and Management of Demand -- 5.3 Energy Services in Developing Nations -- 5.4 Energy Supplies in the Developing Nations -- 5.5 Energy and the Environment in Developing Nations -- 5.6 Conclusion -- References -- Chapter 6 Pathways of Energy Transition and Its Impact on Economic Growth: A Case Study of Brazil -- 6.1 Introduction -- 6.2 The Rationale for Public Investment in Research and Development in Energy Sector -- 6.3 Overview of the Electricity Sector in Brazil -- 6.3.1 Energy Policies in Brazil -- 6.3.2 Climate Change: National Policy 2009 -- 6.3.3 Prioritization of Policies in Choice of Energy Mix (International Atomic Energy Agency, 2006) -- 6.4 Market Structure -- 6.4.1 Government Players -- 6.4.2 Private and Public Players. , 6.5 Programmes and Laws Under the Government of Brazil -- 6.6 An Overview of the Sources of Finance in the Energy Sector: Brazil -- 6.6.1 The Regime for Funding Agency (World Energy Outlook 2013) -- 6.6.2 Source of Funding and Trends in Research and Development -- 6.7 Climate-Resilient Growth: Environmental Consequences -- 6.7.1 Environmental Consequences: Key Takeaways -- 6.8 Social Consequences: Availability, Affordability and Accessibility -- 6.8.1 Social Consequences: Key Takeaways -- 6.9 The Political Economy of Energy Transition: A Brazilian Experience -- 6.10 Interlinking Economic Growth and Energy Use: A Theoretical Construct -- 6.10.1 Renewable Energy Consumption, per Capita GDP Growth, CO2 Emissions, Research and Development Expenditure: A Comparison of BRICS -- 6.11 Conclusion -- Chapter 7 Renewable Energy: Sources, Importance and Prospects for Sustainable Future -- 7.1 Introduction -- 7.2 Sources of Renewable Energy -- 7.2.1 Solar Energy -- 7.2.2 Wind Energy -- 7.2.3 Hydropower -- 7.2.4 Geothermal Energy -- 7.2.5 Biomass -- 7.2.6 Tidal Energy -- 7.3 Advantages and Disadvantages of Various Renewable Energy Resources -- 7.4 Importance of Renewable Energy -- 7.5 Benefits of Renewable Energy Production to the Society -- 7.6 Renewable Energy and Sustainable Development Goals -- 7.7 Limitations in Renewable Energy -- 7.8 Current Status and Future Perspectives -- 7.9 Conclusion -- References -- Chapter 8 Clean Energy Sources for a Better and Sustainable Environment of Future Generations -- 8.1 Introduction -- 8.2 Conventional Sources of Energy -- 8.2.1 Hydro Energy -- 8.2.2 Wind Energy -- 8.2.3 Geothermal Energy -- 8.2.4 Solar Energy -- 8.2.5 Ocean Energy -- 8.3 Environmental Impacts of Renewable Resources -- 8.4 Mitigation Strategies and Sustainable Development of Renewable Resources -- 8.5 Biomass and Microorganisms-Derived Energy. , 8.6 Alternative Energy Resources -- 8.6.1 Biodiesel from Bioengineered Fungi -- 8.6.2 Microbial Fuel Cells (MFCS) -- 8.6.3 Waste-to-Energy Technology -- 8.6.4 Hydrogen as a Fuel -- 8.6.5 Fuel Cell -- 8.6.6 Radiant Energy -- 8.7 Challenges: Implementation to the Usage of Renewable Energy -- 8.7.1 Social Barriers -- 8.7.2 Ecological and Environmental Issues -- 8.7.3 Commercialization and Scalability -- 8.7.4 Material Requirement -- 8.8 Conclusion -- References -- Suggested Readings -- Chapter 9 Sustainable Energy Policies of India to Address Air Pollution and Climate Change -- 9.1 Introduction -- 9.2 Energy Sector of India -- 9.2.1 Energy Reserves -- 9.2.2 Production of Energy -- 9.2.3 Consumption of Fossil Fuel and Electricity -- 9.2.4 Energy Sector and Greenhouse Gases Emission -- 9.3 India's Potential and Policies to Exploit Renewable Sources -- 9.3.1 Solar Energy -- 9.3.2 Wind Energy -- 9.3.3 Hydropower -- 9.3.4 Biomass Energy -- 9.4 National Strategies to Promote Renewable Energy: Policy Framework with Their Objectives -- 9.4.1 India's Electricity Act -- 9.4.2 National Electricity Policy (NEP), 2005 -- 9.4.3 NAPCC-National Action Plan on Climate Change, 2008 -- 9.4.4 Copenhagen Accord -- 9.4.5 India's Intended Nationally Determined Contribution (INDC) -- 9.5 Financial Instruments to Promote Renewable Sources in India -- 9.5.1 Coal Tax -- 9.5.2 Subsidy Cuts on Fossil Fuels -- 9.5.3 Renewable Energy Certificates (RECs) -- 9.5.4 Perform, Achieve and Trade Scheme -- 9.5.5 Other Government Policies, Their Budget and Status -- 9.6 Conclusion -- References -- Chapter 10 A Regime Complex and Technological Innovation in Energy System: A Brazilian Experience -- 10.1 Introduction -- 10.2 Brazil: Its Changing Role in Global Governance -- 10.3 Brazilian Energy: A Regime Complex -- 10.3.1 Role of Brazil and Regime Complex for Climate Change. , 10.4 Implications of Climate Regime on Brazilian Energy Regime -- 10.5 A Shift in Energy Regime: Technological Innovations in Energy Sector -- 10.6 Conclusion -- References -- Websites -- Chapter 11 Opportunities in the Living Lights: Special Reference to Bioluminescent Fungi -- 11.1 Introduction -- 11.2 History of Bioluminescence -- 11.3 Bioluminescence in Terrestrial Organisms -- 11.4 Bioluminescence Molecules -- 11.5 Bioluminescent Fungi -- 11.5.1 Diversity -- 11.5.2 Mechanism of Bioluminescence in Fungi -- 11.5.3 Significance -- 11.6 Opportunities in Fungal Bioluminescence -- 11.6.1 Glowing Tree -- 11.6.2 Bioassay of Toxicity -- 11.6.3 In-Vivo Imaging -- 11.6.4 Animal Model Study -- 11.6.5 Bioactive Secondary Metabolites -- 11.7 Conclusion -- References -- Chapter 12 Production of Liquid Biofuels from Lignocellulosic Biomass -- 12.1 Introduction -- 12.2 Ethanol from Lignocellulosic Biomass -- 12.2.1 Pretreatment of LCB -- 12.2.2 Detoxification -- 12.2.3 Hydrolysis -- 12.2.4 Fermentation -- 12.2.5 Product Recovery -- 12.3 Bio-gasoline from Lignocellulosic Biomass -- 12.3.1 Hydrolysis to Monosaccharides -- 12.3.2 Hydrogenation of Monosaccharides to Polyols -- 12.3.3 Conversion of Polyols and Carbohydrates to C5/C6 Alkanes -- 12.4 Jet Fuels from Lignocellulosic Biomass -- 12.4.1 Production of Jet Fuels from Sugars and Platform Molecules -- 12.4.2 Production of Oil to Jet Fuels -- 12.4.3 Production of Gas to Jet Fuels -- 12.4.4 Production of Alcohol to Jet Fuels -- 12.5 Conversion of Lignin to Hydrocarbons -- 12.6 Conclusion -- References -- Chapter 13 Sustainable Solution for Future Energy Challenges Through Microbes -- 13.1 Introduction -- 13.2 Importance of Energy and Energy Statistics -- 13.3 Brief History of Biofuels -- 13.4 Classification of Biofuels -- 13.4.1 First Generation (1G) -- 13.4.2 Second Generation (2G). , 13.4.3 Third Generation (3G).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...