GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Pisum (senescence)  (1)
  • Plant Physiology  (1)
  • Plant biochemistry  (1)
  • 1
    Keywords: Biochemistry ; Plant diseases ; Cytology ; Plant Physiology ; Plant physiology ; Plant anatomy ; Plant biochemistry. ; Plant development. ; Plant pathology. ; Oxidative stress.
    Description / Table of Contents: Chapter 1. Hydrogen peroxide and nitric oxide generation in plant cells: Overview and queries -- Chapter 2.Nitric oxide and hydrogen peroxide signalling network -- Chapter 3.H2O2 and NO derived posttranslational modifications -- Chapter 4.Transcriptional regulation of gene expression related to NO and H2O2.-Chapter 5.Metabolism and interplay of reactive oxygen and nitrogen species in plant mitochondria -- Chapter 6.Hydrogen peroxide and nitric oxide metabolism in chloroplasts -- Chapter 7.Participation of nitric oxide and hydrogen peroxide in regulation of seed germination -- Chapter 8.Nitric oxide and hydrogen peroxide in root organogenesis -- Chapter 9.Nitric oxide and Hydrogen peroxide: signals in fruit ripening -- Chapter 10.Plant abiotic stress: function of Nitric oxide and Hydrogen peroxide -- Chapter 11.Nitric oxide and Hydrogen peroxide in plant response to biotic stress -- Chapter 12.Biotechnological application of Nitric oxide and Hydrogen peroxide in plants
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (XI, 270 p. 24 illus., 23 illus. in color)
    ISBN: 9783030111298
    Series Statement: Springer eBooks
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham : Springer International Publishing
    Keywords: Life sciences ; Life Sciences ; Plant biochemistry ; Oxidative stress ; Plant physiology ; Life sciences ; Plant biochemistry ; Oxidative stress ; Plant physiology ; Kormophyten ; Antioxidans ; Enzym ; Kormophyten ; Antioxidans ; Enzym
    Description / Table of Contents: Plant superoxide dismutases: Function under abiotic stress conditions -- Studies of catalase in plants under abiotic stress -- Ascorbate peroxidase functions in higher plants: The control of the balance between oxidative damage and signaling -- Glutathione reductase: Safeguarding plant cells against oxidant damage -- Function of the various MDAR isoforms in higher plants -- Peroxiredoxins: Types, characteristics and functions in higher plants -- Redox protein thioredoxins: Function under salinity, drought and extreme temperature conditions -- Biosynthesis and regulation of ascorbic acid in plants -- Glutathione metabolism and its function in higher plants adapting to stress -- Revisiting carotenoids and their role in plant stress responses: From biosynthesis to plant signaling mechanisms during stress. Abiotic stress response in plants – the relevance of tocopherols -- Role of flavonoids in plant stress. Class III peroxidases: isoenzymes functions, localization and redox regulation.
    Type of Medium: Online Resource
    Pages: Online-Ressource (XIII, 300 p. 30 illus., 22 illus. in color, online resource)
    ISBN: 9783319750880
    Series Statement: SpringerLink
    RVK:
    RVK:
    Language: English
    Note: Includes bibliographical references
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2048
    Keywords: Key words: Peroxisome ; Pisum (senescence) ; Proteolysis ; Ribulose-1 ; 5 ; -bisphosphate carboxylase/oxygenase ; Senescence ; Xanthine oxidase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. The degradation of peroxisomal and nonperoxisomal proteins by endoproteases of purified peroxisomes from senescent pea (Pisum sativum L.) leaves has been investigated. In our experimental conditions, most peroxisomal proteins were endoproteolytically degraded. This cleavage was prevented, to some extent, by incubation with 2 mM phenylmethylsulfonylfluoride, an inhibitor of serine proteinases. The peroxisomal enzymes glycolate oxidase (EC 1.1.3.1), catalase (EC 1.11.1.6) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49) were susceptible to proteolytic degradation by peroxisomal endoproteases, whereas peroxisomal manganese superoxide dismutase (EC 1.15.1.1) was not. Ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) from spinach and urease (EC 3.5.1.5) from jack bean were strongly degraded in the presence of peroxisomal matrices. These results indicate that proteases from plant peroxisomes might play an important role in the turnover of peroxisomal proteins during senescence, as well as in the turnover of proteins located in other cell compartments during advanced stages of senescence. On the other hand, our data show that peroxisomal endoproteases could potentially carry out the partial proteolysis which results in the irreversible conversion of xanthine dehydrogenase into the superoxide-generating xanthine oxidase (EC 1.1.3.22). This suggests a possible involvement of the peroxisomal endoproteases in a regulated modification of proteins.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...