GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 608–633, doi:10.1002/2014JC010254.
    Beschreibung: The coastal waters of the northern portion of the California Current System experience a seasonal decline in oxygen concentrations and hypoxia over the summer upwelling season that results in negative impacts on habitat for many organisms. Using a regional model extending from 43°N to 50°N, with an oxygen component developed in this study, drivers of seasonal and regional oxygen variability are identified. The model includes two pools of detritus, which was an essential addition in order to achieve good agreement with the observations. The model was validated using an extensive array of hydrographic and moored observations. The model captures the observed seasonal decline as well as spatial trends in bottom oxygen. Spatially, three regions of high respiration are identified as locations where hypoxia develops each modeled year. Two of the regions are previously identified recirculation regions. The third region is off of the Washington coast. Sediment oxygen demand causes the region on the Washington coast to be susceptible to hypoxia and is correlated to the broad area of shallow shelf (〈60 m) in the region. Respiration and circulation-driven divergence contribute similar (60, 40%, respectively) amounts to the integrated oxygen budget on the Washington coast while respiration dominates the Oregon coast. Divergence, or circulation, contributes to the oxygen dynamics on the shelf in two ways: first, through the generation of retention features, and second, by determining variability.
    Beschreibung: This work was supported by a postdoctoral fellowship to Samantha Siedlecki from JISAO and the Program on Climate Change at the University of Washington, and grants from the Coastal Ocean Program of the National Oceanic and Atmospheric Administration (NOAA) (NA09NOS4780180) and the National Science Foundation (NSF) (OCE0942675) as part of the Pacific Northwest Toxins (PNWTOX) project.
    Beschreibung: 2015-08-05
    Schlagwort(e): Hypoxia ; Oxygen ; Respiration ; Upwelling
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L03601, doi:10.1029/2011GL050366.
    Beschreibung: Model simulations performed with a three-dimensional, high-resolution, process study ocean model of eastern boundary upwelling systems are used to describe a mechanism that efficiently transports sediment-derived dissolved iron offshore in the subsurface through the bottom boundary layer (BBL) during downwelling-favorable wind events. In the model, sediment-derived iron accumulates in the BBL on the outer shelf when the winds are upwelling-favorable. When the wind reverses, the iron-laden BBL is mixed into the water column and transported offshore along isopycnals that intersect the bottom. Depending on the frequency of wind reversal, between 10–50% of the shelf sediment-derived iron flux is exported offshore through this previously unidentified subsurface pathway. If this mechanism operates on all coastal upwelling regimes, the global export of sediment-derived iron to the open ocean would be equivalent to ten times larger than the estimated source of dissolved iron from aerosols.
    Beschreibung: NSF supported this work.
    Beschreibung: 2012-08-11
    Schlagwort(e): Coastal oceanography ; Iron export ; Upwelling
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: text/plain
    Format: application/pdf
    Format: application/msword
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...