GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ocean Drilling Program; ODP  (4)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Henehan, Michael J; Hull, Pincelli M; Penman, Donald E; Rae, James W B; Schmidt, Daniela N (2016): Biogeochemical significance of pelagic ecosystem function: an end-Cretaceous case study. Philosophical Transactions of the Royal Society B-Biological Sciences, 371(1694), 20150510, https://doi.org/10.1098/rstb.2015.0510
    Publication Date: 2024-01-09
    Description: Pelagic ecosystem function is integral to global biogeochemical cycling, and plays a major role in modulating atmospheric CO2 concentrations (pCO2). Uncertainty as to the effects of human activities on marine ecosystem function hinders projection of future atmospheric pCO2. To this end, events in the geological past can provide informative case studies in the response of ecosystem function to environmental and ecological changes. Around the Cretaceous-Palaeogene (K-Pg) boundary, two such events occurred: Deccan large igneous province (LIP) eruptions and massive bolide impact at the Yucatan Peninsula. Both perturbed the environment, but only the impact coincided with marine mass extinction. As such, we use these events to directly contrast the response of marine biogeochemical cycling to environmental perturbation with and without changes in global species richness. We measure this biogeochemical response using records of deep-sea carbonate preservation. We find that Late Cretaceous Deccan volcanism prompted transient deep-sea carbonate dissolution of a larger magnitude and timescale than predicted by geochemical models. Even so, the effect of volcanism on carbonate preservation was slight compared with bolide impact. Empirical records and geochemical models support a pronounced increase in carbonate saturation state for more than 500 000 years following the mass extinction of pelagic carbonate producers at the K-Pg boundary. These examples highlight the importance of pelagic ecosystems in moderating climate and ocean chemistry.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Foster, Laura C; Schmidt, Daniela N; Thomas, Ellen; Arndt, Sandra; Ridgwell, Andy (2013): Surviving rapid climate change in the deep sea during the Paleogene hyperthermals. Proceedings of the National Academy of Sciences of the United States of America, 110(23), 9273-9276, https://doi.org/10.1073/pnas.1300579110
    Publication Date: 2024-01-09
    Description: Predicting the impact of ongoing anthropogenic CO2 emissions on calcifying marine organisms is complex, owing to the synergy between direct changes (acidification) and indirect changes through climate change (e.g., warming, changes in ocean circulation, and deoxygenation). Laboratory experiments, particularly on longer-lived organisms, tend to be too short to reveal the potential of organisms to acclimatize, adapt, or evolve and usually do not incorporate multiple stressors. We studied two examples of rapid carbon release in the geological record, Eocene Thermal Maximum 2 (~53.2 Ma) and the Paleocene Eocene Thermal Maximum (PETM, ~55.5 Ma), the best analogs over the last 65 Ma for future ocean acidification related to high atmospheric CO2 levels. We use benthic foraminifers, which suffered severe extinction during the PETM, as a model group. Using synchrotron radiation X-ray tomographic microscopy, we reconstruct the calcification response of survivor species and find, contrary to expectations, that calcification significantly increased during the PETM. In contrast, there was no significant response to the smaller Eocene Thermal Maximum 2, which was associated with a minor change in diversity only. These observations suggest that there is a response threshold for extinction and calcification response, while highlighting the utility of the geological record in helping constrain the sensitivity of biotic response to environmental change.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 6 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Jennions, Suzanne M; Thomas, E; Schmidt, Daniela N; Lunt, Ian D; Ridgwell, Andy (2015): Changes in benthic ecosystems and ocean circulation in the Southeast Atlantic across Eocene Thermal Maximum 2. Paleoceanography, 30(8), 1059-1077, https://doi.org/10.1002/2015PA002821
    Publication Date: 2024-01-09
    Description: Eocene Thermal Maximum 2 (ETM2) occurred ~1.8 Myr after the Paleocene Eocene Thermal Maximum (PETM) and, like the PETM, was characterized by a negative carbon isotope excursion coupled with warming. We combined benthic foraminiferal and sedimentological records for Southeast Atlantic Sites 1263 (1500 m paleodepth) and 1262 (3600 m paleodepth) to show that benthic foraminiferal diversity and accumulation rates declined more precipitously and severely at the shallower site during peak ETM2. The sites are in close proximity, so differences in surface productivity cannot have caused this differential effect. Instead, on the basis of an analysis of climate modelling experiments, we infer that changes in ocean circulation pattern across ETM2 may have resulted in more pronounced warming at intermediate depths (Site 1263). The effects of more pronounced warming include increased metabolic rates, leading to a decrease in effective food supply and increased deoxygenation, thus potentially explaining the more severe benthic impacts at Site 1263. In response to more severe benthic disturbance, bioturbation may have decreased at Site 1263 as compared to Site 1262, hence differentially affecting the bulk carbonate record. We use a sediment-enabled Earth system model to test whether a reduction in bioturbation and/or the likely reduced carbonate saturation of more poorly ventilated waters can explain the more extreme excursion in bulk d13C and sharper transition in wt% CaCO3 at Site 1263. We find that both enhanced acidification and reduced bioturbation during peak ELMO conditions are needed to account for the observed features. Our combined ecological and modelling analysis illustrates the potential role of ocean circulation changes in amplifying local environmental changes and driving temporary, but drastic, loss of benthic biodiversity and abundance.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schmidt, Daniela N; Caromel, Aude G M; Seki, Osamu; Rae, James W B; Renaud, Sabrina (submitted): Ecological and evolutionary response of marine plankton to habitat formation and destruction in the marine environment. Ecology and Evolution
    Publication Date: 2024-02-16
    Description: Sediment samples from both Site 165-999/165-1000 (Atlantic) and Site 202-1241 (Pacific) were chosen at 1Ma intervals over the period 0.3-9.3Ma. Samples were washed and sieved 〈150µm. Splits of the sediment fraction were picked completely to obtain, where possible, at least 30 specimens each of planktic foraminifer species Globigerinoides sacculifer and Globorotalia tumida, on which outline analysis (Fourier) was performed. Sea surface and thermocline temperatures were reconstructed from palaeoenvironmental proxies (UK37' and Tex86H respectively).
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...