GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-06-22
    Description: The critical role of rare earth elements (Lanthanides plus Yttrium; hereafter REE) in high-tech technologies and consequently their increasing demand from the industry, in addition to the capability of REE to trace water–rock interaction processes, boosted the study of REE in unconventional extreme environments. This study is focused on the geochemical behaviour of REE in the hyperacid sulphate-rich brine of the crater lake of Poás volcano (Costa Rica), where the precipitation of gypsum occurs. This system can hence be considered as a natural laboratory to evaluate the fractionation of REE between the lake water (mother brine) and the precipitating gypsum mineral. Total REE concentrations dissolved in waters range from 1.14 to 2.18 mg kg−1. Calculated distribution coefficients (KD) for REE between the gypsum and the mother brine indicate a preferential removal of the light REE (LREE) with respect to the heavy REE (HREE), with KD values mainly decreasing from La to Lu. During the observation period (2007–2009), the distributions of REE concentrations dissolved in lake water normalized to the average local volcanic rock show two different trends: i) LREE depleted patterns, and ii) flat patterns. The identification of the LREE depleted pattern is justified by the KD calculated in this study. We demonstrate that the precipitation of gypsum is able to strongly fractionate the REE in hyperacid sulphate-rich brine, inducing changes in REE concentrations and distributions over time. X-ray computed tomography imaging was performed on gypsum crystal (precipitated from the lake waters) to gain insights on crystal-scale processes possibly controlling the REE geochemistry, i.e. surface processes vs. structural substitution. Accordingly, the heavy metals and possibly the REE seem to be mainly located on the crystal surface rather than inside the crystal, suggesting that a surface process could be the major process controlling REE removal from the water to the crystal.
    Description: Published
    Description: 87-96
    Description: 3V. Proprietà dei magmi e dei prodotti vulcanici
    Description: 2IT. Laboratori sperimentali e analitici
    Description: JCR Journal
    Keywords: Poas volcano ; Water–rock interaction ; Hyperacid brine lake ; Rare earth elements ; Gypsum precipitation ; 04.08. Volcanology ; Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bekaert, D. V., Gazel, E., Turner, S., Behn, M. D., de Moor, J. M., Zahirovic, S., Manea, V. C., Hoernle, K., Fischer, T. P., Hammerstrom, A., Seltzer, A. M., Kulongoski, J. T., Patel, B. S., Schrenk, M. O., Halldórsson, S. A., Nakagawa, M., Ramírez, C. J., Krantz, J. A., Yücel, M., Ballentine, C. J., Giovannelli, D., Lloyd, K. G., Barry, P. H. High (3)He/(4)He in central Panama reveals a distal connection to the Galápagos plume. Proceedings of the National Academy of Sciences of the United States of America, 118(47), (2021): e2110997118, https://doi.org/10.1073/pnas.2110997118.
    Description: It is well established that mantle plumes are the main conduits for upwelling geochemically enriched material from Earth's deep interior. The fashion and extent to which lateral flow processes at shallow depths may disperse enriched mantle material far (〉1,000 km) from vertical plume conduits, however, remain poorly constrained. Here, we report He and C isotope data from 65 hydrothermal fluids from the southern Central America Margin (CAM) which reveal strikingly high 3He/4He (up to 8.9RA) in low-temperature (≤50 °C) geothermal springs of central Panama that are not associated with active volcanism. Following radiogenic correction, these data imply a mantle source 3He/4He 〉10.3RA (and potentially up to 26RA, similar to Galápagos hotspot lavas) markedly greater than the upper mantle range (8 ± 1RA). Lava geochemistry (Pb isotopes, Nb/U, and Ce/Pb) and geophysical constraints show that high 3He/4He values in central Panama are likely derived from the infiltration of a Galápagos plume–like mantle through a slab window that opened ∼8 Mya. Two potential transport mechanisms can explain the connection between the Galápagos plume and the slab window: 1) sublithospheric transport of Galápagos plume material channeled by lithosphere thinning along the Panama Fracture Zone or 2) active upwelling of Galápagos plume material blown by a “mantle wind” toward the CAM. We present a model of global mantle flow that supports the second mechanism, whereby most of the eastward transport of Galápagos plume material occurs in the shallow asthenosphere. These findings underscore the potential for lateral mantle flow to transport mantle geochemical heterogeneities thousands of kilometers away from plume conduits.
    Description: This work was principally supported by Grant G-2016-7206 from the Alfred P. Sloan Foundation and the Deep Carbon Observatory to P.H.B. We also acknowledge the NSF awards (1144559, 1923915, and 2015789) to P.H.B., which partially supported this work. S.Z. was supported by the Australian Research Council Grant DE210100084 and a University of Sydney Robinson Fellowship. D.G. was partially supported by funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program Grant Agreement No. 948972—COEVOLVE—ERC-2020-STG. This study was also supported in part by NSF award No. EAR 1826673 to E.G. Folkmar Hauff is acknowledged for contributing to the analysis of the La Providencia samples at GEOMAR.
    Keywords: Helium ; Mantle plume ; Slab window ; Mantle flow ; Geochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...