GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Hyphomicrobium ; Dimethylsulphoxide reductase ; Periplasmic enzymes ; Chemolithoheterotrophic growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Hyphomicrobium EG can grow with dimethylsulphoxide as sole carbon and energy source with oxygen as electron acceptor. In the present work we have found that the dimethylsulphoxide reductase of this bacterium could be assayed with dithionite-reduced methylviologen as reductant but not with NADH. Sub-cellular fractionation of Hyphomicrobium EG showed that the dimethylsulphoxide reductase was a periplasmic enzyme. An antibody to the dimethylsulphoxide reductase of Rhodobacter capsulatus cross-reacted with a polypeptide in the periplasmic fraction from Hyphomicrobium EG which had the same M r as the dimethylsulphoxide reductase of Rhodobacter capsulatus. It is suggested that the reduction of dimethylsulphoxide in Hyphomicrobium involves respiratory electron transfer.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-8773
    Keywords: cytochrome oxidation ; dissimilatory Fe(III) reduction ; Fe(III) chelators ; membrane-bound Fe(III) reductase ; Shewanella putrefaciens
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The ability of S. putrefaciens to reduce Fe(III) complexed by a variety of ligands has been investigated. All of the ligands tested caused the cation to be more susceptible to reduction by harvested whole cells than when uncomplexed, although some complexes were more readily reduced than others. Monitoring rates of reduction by a ferrozine assay for Fe(II) formation proved inadequate using Fe(III) ligands giving Fe(II) complexes of low kinetic lability (e.g. EDTA). A more suitable assay for Fe(III) reduction in the presence of such ligands proved to be the observation of associated cytochrome oxidation and re-reduction. Where possible, an assay for Fe(III) reduction based upon the disappearance of Fe(III) complex was also employed. Reduction of all Fe(III) complexes tested was totally inhibited by the presence of O2, partially inhibited by HQNO and slower in the absence of a physiological electron donor. Upon cell fractionation, Fe(III) reductase activity was detected exclusively in the membranes. Using different physiological electron donors in assays on membranes, relative reduction rates of Fe(III) complexes complemented the data from whole cells. The differences in susceptibility to reduction of the various complexes are discussed, as is evidence for the respiratory nature of the reduction.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...