GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Eucalyptus globulus  (1)
  • Talaromyces flavus  (1)
  • Transposable element  (1)
Document type
Publisher
Years
  • 1
    ISSN: 1572-9788
    Keywords: disease resistance ; glucose oxidase ; Gossypium hirsutum ; Nicotiana tabacum ; Talaromyces flavus ; transgenic plant
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Glucose oxidase secreted by the fungus Talaromyces flavus generates, in the presence of glucose, hydrogen peroxide that is toxic to phytopathogenic fungi responsible for economically important diseases in many crops. A glucose oxidase gene from T. flavus, was modified with a carrot extensin signal peptide and fused to either a constitutive or root-specific plant promoter. T1 tobacco plants expressing the enzyme constitutively were protected against infection by the seedling pathogen Rhizoctonia solani. Constitutive expression in tobacco was associated with reduced root growth, and slow germination on culture medium, and with reduced seed set in glasshouse conditions. Several independent transformed cotton plants with a root-specific construct expressed high glucose oxidase activity in the roots, excluding the root tip. Selected T3 homozygous lines showed some protection against the root pathogen, Verticillium dahliae, but not against Fusarium oxysporum. High levels of glucose oxidase expression in cotton roots were associated with reduced height, seed set and seedling germination and reduced lateral root formation. If this gene is to be of value for crop protection against pathogens it will require precise control of its expression to remove the deleterious phenotypes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Ac ; Transposable element ; Maize ; Transcription
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A combination of cDNA cloning and S1 analyses of RNA isolated from maize seedlings that carry an active Ac element has been used to define the Ac transcript. The primary transcript contains 4 introns that are excised to give a processed message which we predict to be approximately 3.4 kb. There are a number of transcription initiation sites clustered within a 90 base region about 300 bases from one end of the element. The first ATG is 600–690 bases from the transcription start and precedes an open reading frame of 807 amino acids— the putative transposase. The transcript extends to within 261 bases from the other end of the element. S1 analysis of RNa from a transgenic tobacco plant carrying an intact copy of the Ac element demonstrated a transcript identical to that in maize, although the preferred initiation sites differ.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5028
    Keywords: Eucalyptus globulus ; floral meristem identity gene ; flower development ; in situ hybridization ; LEAFY homologue
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Two genes cloned from Eucalyptus globulus, Eucalyptus LeaFy (ELF1 and ELF2), have sequence homology to the floral meristem identity genes LEAFY from Arabidopsis and FLORICAULA from Antirrhinum. ELF1 is expressed in the developing eucalypt floral organs in a pattern similar to LEAFY while ELF2 appears to be a pseudo gene. ELF1 is expressed strongly in the early floral primordium and then successively in the primordia of sepals, petals, stamens and carpels. It is also expressed in the leaf primordia and young leaves and adult and juvenile trees. The ELF1 promoter coupled to a GUS reporter gene directs expression in transgenic Arabidopsis in a temporal and tissue-specific pattern similar to an equivalent Arabidopsis LEAFY promoter construct. Strong expression is seen in young flower buds and then later in sepals and petals. No expression was seen in rosette leaves or roots of flowering plants or in any non-flowering plants grown under long days. Furthermore, ectopic expression of the ELF1 gene in transgenic Arabidopsis causes the premature conversion of shoots into flowers, as does an equivalent 35S-LFY construct. These data suggest that ELF1 plays a similar role to LFY in flower development and that the basic mechanisms involved in flower initiation and development in Eucalyptus are similar to those in Arabidopsis.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...