GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Contamination characteristics  (1)
  • Medicine & Public Health  (1)
  • 1
    Keywords: Medicine ; Radiology, Medical ; Nuclear medicine ; Oncology ; Particles (Nuclear physics) ; Medicine & Public Health ; Nuclear medicine ; Oncology ; Particles (Nuclear physics) ; Radiology, Medical ; Medicine ; Positron-Emission Tomography methods ; aTomography, Emission ; Positronen-Emissions-Tomografie ; Positronen-Emissions-Tomografie
    Description / Table of Contents: "Essential for students, science and medical graduates who want to understand the basic science of Positron Emission Tomography (PET), this book describes the physics, chemistry, technology and overview of the clinical uses behind the science of PET and the imaging techniques it uses. In recent years, PET has moved from high-end research imaging tool used by the highly specialized to an essential component of clinical evaluation in the clinic, especially in cancer management. Previously being the realm of scientists, this book explains PET instrumentation, radiochemistry, PET data acquisition and image formation, integration of structural and functional images, radiation dosimetry and protection, and applications in dedicated areas such as drug development, oncology, and gene expression imaging. The technologist, the science, engineering or chemistry graduate seeking further detailed information about PET, or the medical advanced trainee wishing to gain insight into the basic science of PET will find this book invaluable. This book is primarily repackaged content from the Basic Science section of the 'big' Valk book on PET. It contains new, completely revised and unchanged chapters covering the ""basic sciences"" section of the main book - total 18 chapters: 2 new (chapters 1, 16) 8 completely revised (chapters 4, 5, 8, 13, 14, 15, 17, 18) 3 minor corrections (chapters 2, 6, 11) 5 unchanged (chapters 3, 7, 9, 10, 12)"
    Type of Medium: Online Resource
    Pages: Online-Ressource (X, 382 p, digital)
    ISBN: 9781846280078
    Series Statement: SpringerLink
    RVK:
    Language: English
    Note: Includes bibliographical references and index , Preliminary; Positron Emission Tomography in Clinical Medicine; Physics and Instrumentation in PET; Data Acquisition and Performance Characterization in PET; Image Reconstruction Algorithms in PET; Quantitative Techniques in PET; Coregistration of Structural and Functional Images; Anato-Molecular Imaging: Combining Structure and Function; Progress in 11C Radiochemistry; Radiation Dosimetry and Protection in PET; Tracer Kinetic Modeling in PET; Radiohalogens for PET Imaging; Artefacts and Normal Variants in Whole-Body PET and PET/CT Imaging; The Technologist's Perspective , PET Imaging in OncologyMetal Radionuclides for PET Imaging; The Use of Positron Emission Tomography in Drug Discovery and Development; PET as a Tool in Multimodality Imaging of Gene Expression and Therapy; Whole-Body PET Imaging Methods; Back matter
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Siedlecki, S. A., Salisbury, J., Gledhill, D. K., Bastidas, C., Meseck, S., McGarry, K., Hunt, C. W., Alexander, M., Lavoie, D., Wang, Z. A., Scott, J., Brady, D. C., Mlsna, I., Azetsu-Scott, K., Liberti, C. M., Melrose, D. C., White, M. M., Pershing, A., Vandemark, D., Townsend, D. W., Chen, C,. Mook, W., Morrison, R. Projecting ocean acidification impacts for the Gulf of Maine to 2050: new tools and expectations. Elementa: Science of the Anthropocene, 9(1), (2021): 00062, https://doi.org/10.1525/elementa.2020.00062.
    Description: Ocean acidification (OA) is increasing predictably in the global ocean as rising levels of atmospheric carbon dioxide lead to higher oceanic concentrations of inorganic carbon. The Gulf of Maine (GOM) is a seasonally varying region of confluence for many processes that further affect the carbonate system including freshwater influences and high productivity, particularly near the coast where local processes impart a strong influence. Two main regions within the GOM currently experience carbonate conditions that are suboptimal for many organisms—the nearshore and subsurface deep shelf. OA trends over the past 15 years have been masked in the GOM by recent warming and changes to the regional circulation that locally supply more Gulf Stream waters. The region is home to many commercially important shellfish that are vulnerable to OA conditions, as well as to the human populations whose dependence on shellfish species in the fishery has continued to increase over the past decade. Through a review of the sensitivity of the regional marine ecosystem inhabitants, we identified a critical threshold of 1.5 for the aragonite saturation state (Ωa). A combination of regional high-resolution simulations that include coastal processes were used to project OA conditions for the GOM into 2050. By 2050, the Ωa declines everywhere in the GOM with most pronounced impacts near the coast, in subsurface waters, and associated with freshening. Under the RCP 8.5 projected climate scenario, the entire GOM will experience conditions below the critical Ωa threshold of 1.5 for most of the year by 2050. Despite these declines, the projected warming in the GOM imparts a partial compensatory effect to Ωa by elevating saturation states considerably above what would result from acidification alone and preserving some important fisheries locations, including much of Georges Bank, above the critical threshold.
    Description: This research was financially supported by the Major Special Projects of the Ministry of Science and Technology of China (2016YFC020600), the Young Scholars Science Foundation of Lanzhou Jiaotong University (2018033), and the Talent Innovation and Entrepreneurship Projects of Lanzhou (2018-RC-84).
    Keywords: PM2.5 ; Contamination characteristics ; Meteorological factors ; Metal source analysis ; Lanzhou
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...