GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: Spinal cord ; Scratch reflex ; Ventral spino-cerebellar tract ; Spino-reticulo-cerebellar pathway ; Cerebellum ; Cooling the nervous tissue ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary (1) The “fictitious” scratch reflex was evoked in decerebrate curarized cats by pinna stimulation. Activity of neurons of the ventral spinocerebellar tract (VSCT) from the L4 and L5 segments of the spinal cord as well as of neurons of the spinoreticulo-cerebellar pathway (SRCP) from the lateral reticular nucleus of the medulla oblongata was recorded. Cooling and destruction of different parts of the lumbo-sacral enlargement of the spinal cord were performed. (2) Cooling of the L5 or L6 segment abolished the rhythmic activity in the greater part of the spinal hindlimb centre but did not affect the generation of rhythmic oscillations in the remaining (rostral) segments of the lumbo-sacral enlargement. Under these conditions, neither the rhythmic activity of VSCT neurons located rostral to the thermode nor that of SRCP neurons changed. (3) A normal rhythmic activity of SRCP neurons also persisted after destruction of grey matter in the L3 and L4 segments. It can be concluded that activity of these neurons is independent of whichever part of the enlargement generates rhythmic oscillations. (4) From these observations a hypothesis is advanced that the main content of signals conveyed by the VSCT and SRCP to the cerebellum is the information regarding activity of the generator of rhythmic oscillations that is located in the L3-L5 spinal segments.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Pteropodial mollusc ; Pedal ganglia ; Locomotion ; Central pattern generator ; Neuron polarization ; Tetrodotoxin ; Cobalt
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Neurons from the isolated pedal ganglia of the marine mollusc Clione limacina were recorded from intracellularly during generation of the locomotory rhythm. Polarization of single type 7 or type 8 interneurons (which discharge in the D-and V-phases of a swim cycle, respectively) strongly affected activity of the rhythm generator. Injection of depolarizing and hyperpolarizing current usually resulted in shortening and lengthening of a swim cycle, respectively. A short pulse of hyperpolarizing current shifted the phase of the rhythmic generator. The same effect could be evoked by polarization of efferent neurons of types 2, 3 and 4 which are electrically coupled to interneurons. On the contrary, polarization of types 1, 6 and 10 efferent neurons, having no electrical connections with interneurons, did not affect the locomotory rhythm. 2. A number of observations indicate that type 7 and 8 interneurons constitute the main source of postsynaptic potentials that were observed in all the “rhythmic” neurons of the pedal ganglia. Type 7 interneurons excited the D-phase neurons and inhibited the V-phase neurons; type 8 interneurons produced opposite effects. 3. Tetrodotoxin eliminated spike generation in all efferent neurons of the pedal ganglia, while in interneurons spike generation persisted. After blocking the spike discharges in all the efferent neurons, type 7 and 8 interneurons were capable of generating alternating activity. One may conclude that these interneurons determine the main features of the swim pattern, i.e., the rhythmic alternating activity of two (D and V) populations of neurons. 4. Both type 7 and type 8 interneurons were capable of endogenous rhythmic discharges with a period like that in normal swimming. This was demonstrated in experiments in which one of the two populations of “rhythmic” neurons (D or V) was inhibited by means of strong electrical hyperpolarization, as well as in experiments in which interaction between the two populations, mediated by chemical synapses, was blocked by Co2+ ions. 5. Type 7 and 8 interneurons were capable of “rebound”, i.e. they had a tendency to discharge after termination of inhibition. 6. V-phase neurons exerted not only inhibitory but also excitatory action upon D-phase neurons, the excitatory action being longer than the inhibitory one. 7. The main experimental findings correspond well to the model of rhythm generator consisting of two half centres possessing endogenous rhythmic activity. The half-centres exert strong, short duration inhibitory and weak long duration excitatory actions upon one another. The behaviour of such a model is considered and compared with that of the locomotor generator of Clione.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...