GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Carbon credits  (1)
  • phagotrophy  (1)
  • 1
    ISSN: 1573-5125
    Keywords: dissolved organic substances ; harmful phytoplankton ; macronutrients ; mixotrophy ; osmotrophy ; phagotrophy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Phytoplankton have traditionally been regarded as strictly phototrophic, with a well defined position at the base of pelagic food webs. However, recently we have learned that the nutritional demands of a growing number of phytoplankton species can be met, at least partially, or under specific environmental conditions, through heterotrophy. Mixotrophy is the ability of an organism to be both phototrophic and heterotrophic, in the latter case utilizing either organic particles (phagotrophy) or dissolved organic substances (osmotrophy). This finding has direct implications for our view on algal survival strategies, particularly for harmful species, and energy- and nutrient flow in pelagic food webs. Mixotrophic species may outcompete strict autotrophs, e.g. in waters poor in inorganic nutrients or under low light. In the traditional view of the ‘microbial loop’ DOC is thought to be channeled from algal photosynthesis to bacteria and then up the food chain through heterotrophic flagellates, ciliates and mesozooplankton. Are mixotrophic phytoplankton that feed on bacteria also significantly contributing to this transport of photosynthetic carbon up the food chain? How can we estimate the fluxes of carbon and nutrients between different trophic levels in the plankton food web involving phagotrophic algae? These questions largely remain unanswered. In this review we treat evidence for both osmotrophy and phagotrophy in phytoplankton, especially toxic marine species, and some ecological implications of mixotrophy.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Marine Pollution Bulletin 56 (2008): 1049-1056, doi:10.1016/j.marpolbul.2008.03.010.
    Description: The proposed plan for enrichment of the Sulu Sea, Philippines, a region of rich marine biodiversity, with thousands of tonnes of urea in order to stimulate algal blooms and sequester carbon is flawed for multiple reasons. Urea is preferentially used as a nitrogen source by some cyanobacteria and dinoflagellates, many of which are neutrally or positively buoyant. Biological pumps to the deep sea are classically leaky, and the inefficient burial of new biomass makes the estimation of a net loss of carbon from the atmosphere questionable at best. The potential for growth of toxic dinoflagellates is also high, as many grow well on urea and some even increase their toxicity when grown on urea. Many toxic dinoflagellates form cysts which can settle to the sediment and germinate in subsequent years, forming new blooms even without further fertilization. If large-scale blooms do occur, it is likely that they will contribute to hypoxia in the bottom waters upon decomposition. Lastly, urea production requires fossil fuel usage, further limiting the potential for net carbon sequestration. The environmental and economic impacts are potentially great and need to be rigorously assessed.
    Description: This paper was developed under the Global Ecology and Oceanography of Harmful Algal Blooms (GEOHAB) core research project on HABs and Eutrophication and the GEOHAB regional focus on HABs in Asia. GEOHAB is supported by the International Oceanographic Commission (IOC) of UNESCO and by the Scientific Committee on Oceanic Research (SCOR), which are, in turn, supported by multiple agencies, including NSF and NOAA of the USA.
    Keywords: Urea dumping ; Ocean fertilization ; Carbon credits ; Sulu Sea ; Carbon sequestration ; Harmful algae ; Toxic dinoflagellates ; Cyanobacteria ; Hypoxia
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...