GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Aquatic geochemistry 1 (1995), S. 147-156 
    ISSN: 1573-1421
    Keywords: geochemistry ; mass balance ; chemical weathering ; mechanical denudation ; Changhuajiang River watershed
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Based on the geological background, R-mode factor statistics, and the analysis of the stability diagram for the corresponding system, five weathering reactions controlling the surface-water chemical composition in the watershed of the Changhuajiang River are deduced. In the mass balance model, the precipitation accounts for some solute input, since the rainwater is dilute without pollution. Most of the Ca2+ and HCO 3 − ions are from the dissolution of calcite, K+, Na+, H4SiO4 and some of the Mg2+ and HCO 3 − come from albite and biotite weathering to kaolinite. The dissolution of dolomite and gypsum controls the mass balances of Mg2+ and SO 4 2− . The dissolution of calcite is the dominant chemical weathering reaction in the watershed because of its reactivity and high concentration. In the watershed in 1986, the chemical weathering rate was 0.073 (kg/m2 a), and the mechanical denudation rate is 0.093 (kg/m2 a). The chemical weathering mass output proportion of carbonate rocks to silicate rocks was about three to one.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L20713, doi:10.1029/2012GL053322.
    Description: Characteristics of the Indian and Australian summer monsoon systems, their seasonality and interactions are examined in a variety of observational datasets and in the Coupled Model Intercomparison Project Phase 3 and 5 (CMIP3 and CMIP5) climate models. In particular, it is examined whether preferred monsoon transitions between the two regions and from one year to another, that form parts of the Tropospheric Biennial Oscillation, can lead to improved predictive skill. An overall improvement in simulation of seasonality for both monsoons is seen in CMIP5 over CMIP3, with most CMIP5 models correctly simulating very low rainfall rates outside of the monsoon season. The predictability resulting from each transition is quantified using a Monte Carlo technique. The transition from strong/weak Indian monsoon to strong/weak Australian monsoon shows ∼15% enhanced predictability in the observations, in estimating whether the following monsoon will be stronger/weaker than the climatology. Most models also successfully simulate this transition. However, enhanced predictability for other transitions is less clear.
    Description: This project was supported by funding from the Australian Research Council (DP110100601) and the Centre of Excellence for Climate System Science. This work was also supported by an award under the Merit Allocation Scheme on the NCI National Facility at the ANU
    Description: 2013-04-26
    Keywords: Australian monsoon ; CMIP models ; Indian monsoon ; Tropospheric biennial oscillation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...