GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • BIOACID; Biological Impacts of Ocean Acidification; Ciliates, other; DATE/TIME; Day of experiment; Dinoflagellates, athecate; Dinoflagellates, thecate; Dinophysis sp.; Euplotes sp.; Event label; Gullmar Fjord, Skagerrak, Sweden; Gyrodinium sp.; Identification; KOSMOS_2013_Mesocosm-M1; KOSMOS_2013_Mesocosm-M10; KOSMOS_2013_Mesocosm-M2; KOSMOS_2013_Mesocosm-M3; KOSMOS_2013_Mesocosm-M4; KOSMOS_2013_Mesocosm-M5; KOSMOS_2013_Mesocosm-M6; KOSMOS_2013_Mesocosm-M7; KOSMOS_2013_Mesocosm-M8; KOSMOS_2013_Mesocosm-M9; KOSMOS 2013; Laboea strobila; Lohmanniella oviformis; MESO; Mesocosm experiment; Myrionecta rubra; Protoperidinium sp.; Strobilidium sp.; Strombidium sp.; Suctoria; Tontonia gracillima; Treatment  (1)
  • BIOACID; Biological Impacts of Ocean Acidification; DATE/TIME; Day of experiment; KOSMOS_2012_Tvaerminne; MESO; Mesocosm experiment; Mesocosm label; Phase; Primary production, carbon assimilation (24 hr.), integrated; Respiration rate, oxygen  (1)
  • CO2S; CO2 Sensor; Kiel Fjord; Kiel-Fjord_GEOMAR  (1)
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2023-01-13
    Description: A HydroC® CO2 sensor was deployed from a pontoon at the waterfront of the GEOMAR west shore building into Kiel Fjord, Western Baltic Sea (Kiel, Germany; 54°19'48.78"N, 010° 8'59.44"E). Since the pontoon is floating the deployment depth of the sensor was constant at 1m. Data of two deployment intervals are published here: February 2015 – May 2015 and August 2015 – January 2016.
    Keywords: CO2S; CO2 Sensor; Kiel Fjord; Kiel-Fjord_GEOMAR
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-06
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; Ciliates, other; DATE/TIME; Day of experiment; Dinoflagellates, athecate; Dinoflagellates, thecate; Dinophysis sp.; Euplotes sp.; Event label; Gullmar Fjord, Skagerrak, Sweden; Gyrodinium sp.; Identification; KOSMOS_2013_Mesocosm-M1; KOSMOS_2013_Mesocosm-M10; KOSMOS_2013_Mesocosm-M2; KOSMOS_2013_Mesocosm-M3; KOSMOS_2013_Mesocosm-M4; KOSMOS_2013_Mesocosm-M5; KOSMOS_2013_Mesocosm-M6; KOSMOS_2013_Mesocosm-M7; KOSMOS_2013_Mesocosm-M8; KOSMOS_2013_Mesocosm-M9; KOSMOS 2013; Laboea strobila; Lohmanniella oviformis; MESO; Mesocosm experiment; Myrionecta rubra; Protoperidinium sp.; Strobilidium sp.; Strombidium sp.; Suctoria; Tontonia gracillima; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 3328 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Finnish Environment Institute | Supplement to: Spilling, Kristian; Paul, Allanah Joy; Virkkala, Niklas; Hastings, Tom; Lischka, Silke; Stuhr, Annegret; Bermúdez Monsalve, Rafael; Czerny, Jan; Boxhammer, Tim; Schulz, Kai Georg; Ludwig, Andrea; Riebesell, Ulf (2016): Ocean acidification decreases plankton respiration: evidence from a mesocosm experiment. Biogeosciences, 13(16), 4707-4719, https://doi.org/10.5194/bg-13-4707-2016
    Publication Date: 2024-06-13
    Description: Anthropogenic carbon dioxide (CO2) emissions are reducing the pH in the world's oceans. The plankton community is a key component driving biogeochemical fluxes, and the effect of increased CO2 on plankton is critical for understanding the ramifications of ocean acidification on global carbon fluxes. We determined the plankton community composition and measured primary production, respiration rates and carbon export (defined here as carbon sinking out of a shallow, coastal area) during an ocean acidification experiment. Mesocosms (~ 55 m3) were set up in the Baltic Sea with a gradient of CO2 levels initially ranging from ambient (~ 240 µatm), used as control, to high CO2 (up to ~ 1330 µatm). The phytoplankton community was dominated by dinoflagellates, diatoms, cyanobacteria and chlorophytes, and the zooplankton community by protozoans, heterotrophic dinoflagellates and cladocerans. The plankton community composition was relatively homogenous between treatments. Community respiration rates were lower at high CO2 levels. The carbon-normalized respiration was approximately 40 % lower in the high CO2 environment compared with the controls during the latter phase of the experiment. We did not, however, detect any effect of increased CO2 on primary production. This could be due to measurement uncertainty, as the measured total particular carbon (TPC) and combined results presented in this special issue suggest that the reduced respiration rate translated into higher net carbon fixation. The percent carbon derived from microscopy counts (both phyto- and zooplankton), of the measured total particular carbon (TPC) decreased from ~ 26 % at t0 to ~ 8 % at t31, probably driven by a shift towards smaller plankton (〈 4 µm) not enumerated by microscopy. Our results suggest that reduced respiration lead to increased net carbon fixation at high CO2. However, the increased primary production did not translate into increased carbon export, and did consequently not work as a negative feedback mechanism for increasing atmospheric CO2 concentration.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; DATE/TIME; Day of experiment; KOSMOS_2012_Tvaerminne; MESO; Mesocosm experiment; Mesocosm label; Phase; Primary production, carbon assimilation (24 hr.), integrated; Respiration rate, oxygen
    Type: Dataset
    Format: text/tab-separated-values, 1218 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...