GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Harmful algal blooms  (2)
  • Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Behaviour; Benthic animals; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Calculated using seacarb after Orr et al. (2018); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Fugacity of carbon dioxide in seawater, standard deviation; Herbivory rate per grazer; Herbivory rate per grazer, standard deviation; Identification; Laboratory experiment; Lacuna vincta; Mollusca; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Other; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Registration number of species; Respiration; Respiration rate, oxygen; Respiration rate, oxygen, standard deviation; Salinity; Salinity, standard deviation; Shinnecock_Bay; Single species; Species; Temperate; Temperature, water; Temperature, water, standard deviation; Treatment; Type; Uniform resource locator/link to reference  (1)
  • Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcite saturation state, standard deviation; Calculated; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure, standard deviation; Chordata; Coast and continental shelf; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Identification; Laboratory experiment; Measured; Menidia beryllina; Menidia beryllina, length; Menidia beryllina, length, standard devitation; Mortality/Survival; Nekton; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; pH meter (Orion); Salinity; Salinity, standard deviation; Sample ID; Single species; Survival; Temperate; Temperature, standard deviation; Temperature, water  (1)
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2024-03-15
    Description: While ocean acidification has different effects on herbivores and autotrophs, how acidification may influence herbivory is poorly understood. This study examined how grazing by the gastropod Lacuna vincta (hereafter Lacuna) on the macroalgae Ulva spp. (hereafter Ulva) is influenced by ocean acidification. Herbivory by Lacuna was significantly reduced under elevated partial pressure of carbon dioxide ( pCO2; 1500-2000 µatm) relative to ambient pCO2 (400 µatm). This significant decrease in herbivory was unrelated to the physiological status of Ulva but rather was specifically elicited when Lacuna was exposed to elevated pCO2 in the absence of food for 18 to 24 h prior to grazing Ulva. The negative effects of elevated pCO2 on Lacuna were absent at 400 to 800 µatm pCO2 or when fed but persisted for up to 72 h following a 24 h exposure to elevated pCO2 without food. Depressed respiration rates in Lacuna following exposure to high pCO2 without food indicated these conditions produced metabolic suppression potentially associated with acidosis. Collectively, the lasting (72 h) nature of grazing inhibition of Lacuna following brief exposure (18 h) to moderate pCO2 levels (〉1500 µatm) when food was not available suggests this process could have broad effects on the dynamics of macroalgae in estuaries where Lacuna is a dominant grazer; these effects will be amplified as climate change progresses.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Behaviour; Benthic animals; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Calculated using seacarb after Orr et al. (2018); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Fugacity of carbon dioxide in seawater, standard deviation; Herbivory rate per grazer; Herbivory rate per grazer, standard deviation; Identification; Laboratory experiment; Lacuna vincta; Mollusca; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Other; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Registration number of species; Respiration; Respiration rate, oxygen; Respiration rate, oxygen, standard deviation; Salinity; Salinity, standard deviation; Shinnecock_Bay; Single species; Species; Temperate; Temperature, water; Temperature, water, standard deviation; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 1612 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Baumann, Hannes; Talmage, Stephanie C; Gobler, Christopher J (2012): Reduced early life growth and survival in a fish in direct response to increased carbon dioxide. Nature Climate Change, 2, 38-41, https://doi.org/10.1038/nclimate1291
    Publication Date: 2024-03-15
    Description: Absorption of anthropogenic carbon dioxide by the world's oceans is causing mankind's 'other CO2 problem', ocean acidification. Although this process will challenge marine organisms that synthesize calcareous exoskeletons or shells, it is unclear how it will affect internally calcifying organisms, such as marine fish. Adult fish tolerate short-term exposures to CO2 levels that exceed those predicted for the next 300 years (~2,000 ppm), but potential effects of increased CO2 on growth and survival during the early life stages of fish remain poorly understood. Here we show that the exposure of early life stages of a common estuarine fish (Menidia beryllina) to CO2 concentrations expected in the world's oceans later this century caused severely reduced survival and growth rates. When compared with present-day CO2 levels (~400 ppm), exposure of M. beryllina embryos to ~1,000 ppm until one week post-hatch reduced average survival and length by 74% and 18%, respectively. The egg stage was significantly more vulnerable to high CO2-induced mortality than the post-hatch larval stage. These findings challenge the belief that ocean acidification will not affect fish populations, because even small changes in early life survival can generate large fluctuations in adult-fish abundance.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcite saturation state, standard deviation; Calculated; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure, standard deviation; Chordata; Coast and continental shelf; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Identification; Laboratory experiment; Measured; Menidia beryllina; Menidia beryllina, length; Menidia beryllina, length, standard devitation; Mortality/Survival; Nekton; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; pH meter (Orion); Salinity; Salinity, standard deviation; Sample ID; Single species; Survival; Temperate; Temperature, standard deviation; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 1887 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Harmful Algae 8 (2008): 39-53, doi:10.1016/j.hal.2008.08.017.
    Description: Coastal waters of the United States (U.S.) are subject to many of the major harmful algal bloom (HAB) poisoning syndromes and impacts. These include paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), ciguatera fish poisoning (CFP) and various other HAB phenomena such as fish kills, loss of submerged vegetation, shellfish mortalities, and widespread marine mammal mortalities. Here, the occurrences of selected HABs in a selected set of regions are described in terms of their relationship to eutrophication, illustrating a range of responses. Evidence suggestive of changes in the frequency, extent or magnitude of HABs in these areas is explored in the context of the nutrient sources underlying those blooms, both natural and anthropogenic. In some regions of the U.S., the linkages between HABs and eutrophication are clear and well documented, whereas in others, information is limited, thereby highlighting important areas for further research.
    Description: Support was provided through the Woods Hole Center for Oceans and Human Health (to DMA), National Science Foundation (NSF) grants OCE-9808173 and OCE-0430724 (to DMA), OCE-0234587 (to WPC), OCE04-32479 (to MLP), OCE-0138544 (to RMK), OCE-9981617 (to PMG); National Institute of Environmental Health Sciences (NIEHS) grants P50ES012742-01 (to DMA) and P50ES012740 (to MLP); NOAA Grants NA96OP0099 (to DMA), NA16OP1450 (to VLT), NA96P00084 (to GAV and CAH), NA160C2936 and NA108H-C (to RMK), NA860P0493 and NA04NOS4780241 (to PMG), NA04NOS4780239-02 (to RMK), NA06NOS4780245 (to DWT). Support was also provided from the West Coast Center for Oceans and Human Health (to VLT and WPC), USEPA Grant CR826792-01-0 (to GAV and CAH), and the State of Florida Grant S7701617826 (to GAV and CAH).
    Keywords: Harmful algal blooms ; HABs ; Red tides ; Eutrophication ; Nutrients ; Nitrogen ; Phosphorus
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 108 (2011): 4352-4357, doi:10.1073/pnas.1016106108.
    Description: Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements demonstrated that the harmful 43 Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen. We subsequently sequenced the first HAB genome (A. anophagefferens) and compared its gene complement to those of six competing phytoplankton species identified via metaproteomics. Using an ecogenomic approach, we specifically focused on the gene sets that may facilitate dominance within the environmental conditions present during blooms. A. anophagefferens possesses a larger genome (56 mbp) and more genes involved in light harvesting, organic carbon and nitrogen utilization, and encoding selenium- and metal-requiring enzymes than competing phytoplankton. Genes for the synthesis of microbial deterrents likely permit the proliferation of this species with reduced mortality losses during blooms. Collectively, these findings suggest that anthropogenic activities resulting in elevated levels of turbidity, organic matter, and metals have opened a niche within coastal ecosystems that ideally suits the unique genetic capacity of A. anophagefferens and thus has facilitated the proliferation of this and potentially other HABs.
    Description: Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Efforts were also supported by awards from New York Sea Grant to Stony Brook University, National Oceanic and Atmospheric Administration Center for Sponsored Coastal Ocean Research award #NA09NOS4780206 to Woods Hole Oceanographic Institution, NIH grant GM061603 to Harvard University, and NSF award IOS-0841918 to The University of Tennessee.
    Keywords: Harmful algal blooms ; HABs ; Genome sequence ; Ecogenomics ; Metaproteomics ; Eutrophication ; Aureococcus anophagefferens
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...