GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Eutrophication  (3)
  • Alexandrium  (1)
  • Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Arthropoda; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Callinectes sapidus; Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Mortality/Survival; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Oxygen; Oxygen, dissolved; Oxygen, dissolved, standard deviation; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Registration number of species; Salinity; Salinity, standard deviation; Shinnecock_Bay_OA; Single species; Species; Survival; Temperate; Temperature, water; Temperature, water, standard deviation; Treatment; Type; Uniform resource locator/link to reference; Zooplankton
Document type
Keywords
Publisher
  • 1
    Publication Date: 2024-04-28
    Description: Many shallow coastal systems experience diel fluctuations in dissolved oxygen (DO) and pH that can intensify throughout the summer season and expose estuarine organisms to repeated episodes of coastal hypoxia and acidification. In temperate regions, larval release of the economically important blue crab Callinectes sapidus occurs in the summer, and while the earliest stage (zoea I) larvae are susceptible to persistent low DO and low pH conditions, their sensitivity to diel fluctuations is unknown. Here, a series of short-term (〈=96 h) experiments were conducted to investigate the survival of C. sapidus zoea I larvae exposed to a range of diel cycling hypoxic and acidified conditions and durations. Two experiments comparing a diel cycling DO/pH treatment (fluctuating from 30% air saturation to 103% averaging 66%/and from pH 7.26 to 7.80 averaging 7.53) to a static low DO/pH treatment (43%/7.35), a static moderate DO/pH treatment (68%/7.59), and a static control treatment (106%/7.94) indicated that survival in the diel cycling treatment was significantly lower than the moderate treatment (p 〈 0.05) by 75 and 48% over 96 and 48 h, respectively, despite comparable mean experimental DO/pH values. Three other experiments aimed at identifying the effective minimum duration of low DO/low pH to significantly depress larval survival under diel cycling conditions revealed that 8 h of low DO/low pH (28%/7.43) over a 24-h diel cycle consistently decreased survival (p 〈 0.05) relative to control conditions by at least 55% regardless of experimental duration (72-, 48-, and 24-h experiments). An increase in DO beyond saturation to supersaturation (160%) and pH beyond normocapnic to highly basified (8.34) conditions during the day phase of the diel cycle did not improve survival of larvae exposed to nocturnal hypoxia and acidification. Collectively, these experiments demonstrate that diel cycling does not provide newly hatched C. sapidus larvae a temporal refuge capable of ameliorating low DO/pH stress, but rather is more lethal than chronic exposure to comparable average DO/pH conditions. Given that larvae exposed to a single nocturnal episode of moderate hypoxia and acidification experience significantly reduced survival, such occurrences may depress larval recruitment.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Arthropoda; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Callinectes sapidus; Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Mortality/Survival; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Oxygen; Oxygen, dissolved; Oxygen, dissolved, standard deviation; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Registration number of species; Salinity; Salinity, standard deviation; Shinnecock_Bay_OA; Single species; Species; Survival; Temperate; Temperature, water; Temperature, water, standard deviation; Treatment; Type; Uniform resource locator/link to reference; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 3032 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Harmful Algae 8 (2008): 39-53, doi:10.1016/j.hal.2008.08.017.
    Description: Coastal waters of the United States (U.S.) are subject to many of the major harmful algal bloom (HAB) poisoning syndromes and impacts. These include paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), ciguatera fish poisoning (CFP) and various other HAB phenomena such as fish kills, loss of submerged vegetation, shellfish mortalities, and widespread marine mammal mortalities. Here, the occurrences of selected HABs in a selected set of regions are described in terms of their relationship to eutrophication, illustrating a range of responses. Evidence suggestive of changes in the frequency, extent or magnitude of HABs in these areas is explored in the context of the nutrient sources underlying those blooms, both natural and anthropogenic. In some regions of the U.S., the linkages between HABs and eutrophication are clear and well documented, whereas in others, information is limited, thereby highlighting important areas for further research.
    Description: Support was provided through the Woods Hole Center for Oceans and Human Health (to DMA), National Science Foundation (NSF) grants OCE-9808173 and OCE-0430724 (to DMA), OCE-0234587 (to WPC), OCE04-32479 (to MLP), OCE-0138544 (to RMK), OCE-9981617 (to PMG); National Institute of Environmental Health Sciences (NIEHS) grants P50ES012742-01 (to DMA) and P50ES012740 (to MLP); NOAA Grants NA96OP0099 (to DMA), NA16OP1450 (to VLT), NA96P00084 (to GAV and CAH), NA160C2936 and NA108H-C (to RMK), NA860P0493 and NA04NOS4780241 (to PMG), NA04NOS4780239-02 (to RMK), NA06NOS4780245 (to DWT). Support was also provided from the West Coast Center for Oceans and Human Health (to VLT and WPC), USEPA Grant CR826792-01-0 (to GAV and CAH), and the State of Florida Grant S7701617826 (to GAV and CAH).
    Keywords: Harmful algal blooms ; HABs ; Red tides ; Eutrophication ; Nutrients ; Nitrogen ; Phosphorus
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Harmful Algae 9 (2010): 402-412, doi:10.1016/j.hal.2010.02.003.
    Description: The goal of this two-year study was to explore the role of nutrients and climatic conditions in promoting reoccurring Alexandrium fundyense blooms in the Northport-Huntington Bay complex, NY, USA. A bloom in 2007 was short and small (3 weeks, 103 cells L-1 maximal density) compared to 2008 when the A. fundyense bloom, which persisted for six weeks, achieved cell densities 〉106 cells L-1 and water column saxitoxin concentrations 〉2.4 x 104 pmol STX eq. L-1. During the 2008 bloom, both deployed mussels (used as indicator species) and wild soft shell clams became highly toxic (1,400 and 600μg STX eq./100g shellfish tissue, respectively) resulting in the closure of shellfish beds. The densities of benthic A. fundyense cysts at the onset of this bloom were four orders of magnitude lower than levels needed to account for observed cell densities, indicating in situ growth of vegetative cells was responsible for elevated bloom densities. Experimental enrichment of bloom water with nitrogenous compounds, particularly ammonium, significantly increased A. fundyense densities and particulate saxitoxin concentrations relative to unamended control treatments. The δ15N signatures (12 to 23‰) of particulate organic matter (POM) during blooms were similar to those of sewage (10 to 30‰) and both toxin and A. fundyense densities were significantly correlated with POM δ15N (p 〈 0.001). These findings suggest A. fundyense growth was supported by a source of wastewater such as the sewage treatment plant which discharges into Northport Harbor. Warmer than average atmospheric temperatures in the late winter and spring of 2008 and a cooler May contributed to an extended period of water column temperatures optimal for A. fundyense growth (12 – 20ºC), and thus may have also contributed toward the larger and longer bloom in 2008. Together this evidence suggests sewage-derived N loading and above average spring temperatures can promote intense and toxic A. fundyense blooms in estuaries.
    Description: This work was supported by a grant from EPA’s Long Island Sound Study, New York Sea Grant, and the New York State Department of Environmental Conservation (to CJG) and from the NOAA Sea Grant Program (Grant No. NA06OAR4170021 (R/B-177)) to DMA.
    Keywords: Alexandrium ; Anthropogenic nitrogen loading ; δ15N ; Toxin ; Climate
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 108 (2011): 4352-4357, doi:10.1073/pnas.1016106108.
    Description: Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements demonstrated that the harmful 43 Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen. We subsequently sequenced the first HAB genome (A. anophagefferens) and compared its gene complement to those of six competing phytoplankton species identified via metaproteomics. Using an ecogenomic approach, we specifically focused on the gene sets that may facilitate dominance within the environmental conditions present during blooms. A. anophagefferens possesses a larger genome (56 mbp) and more genes involved in light harvesting, organic carbon and nitrogen utilization, and encoding selenium- and metal-requiring enzymes than competing phytoplankton. Genes for the synthesis of microbial deterrents likely permit the proliferation of this species with reduced mortality losses during blooms. Collectively, these findings suggest that anthropogenic activities resulting in elevated levels of turbidity, organic matter, and metals have opened a niche within coastal ecosystems that ideally suits the unique genetic capacity of A. anophagefferens and thus has facilitated the proliferation of this and potentially other HABs.
    Description: Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Efforts were also supported by awards from New York Sea Grant to Stony Brook University, National Oceanic and Atmospheric Administration Center for Sponsored Coastal Ocean Research award #NA09NOS4780206 to Woods Hole Oceanographic Institution, NIH grant GM061603 to Harvard University, and NSF award IOS-0841918 to The University of Tennessee.
    Keywords: Harmful algal blooms ; HABs ; Genome sequence ; Ecogenomics ; Metaproteomics ; Eutrophication ; Aureococcus anophagefferens
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Anderson, D. M., Fensin, E., Gobler, C. J., Hoeglund, A. E., Hubbard, K. A., Kulis, D. M., Landsberg, J. H., Lefebvre, K. A., Provoost, P., Richlen, M. L., Smith, J. L., Solow, A. R., & Trainer, V. L. Marine harmful algal blooms (HABs) in the united states: history, current status and future trends. Harmful Algae, 102, (2021): 101975, https://doi.org/10.1016/j.hal.2021.101975.
    Description: Harmful algal blooms (HABs) are diverse phenomena involving multiple. species and classes of algae that occupy a broad range of habitats from lakes to oceans and produce a multiplicity of toxins or bioactive compounds that impact many different resources. Here, a review of the status of this complex array of marine HAB problems in the U.S. is presented, providing historical information and trends as well as future perspectives. The study relies on thirty years (1990–2019) of data in HAEDAT - the IOC-ICES-PICES Harmful Algal Event database, but also includes many other reports. At a qualitative level, the U.S. national HAB problem is far more extensive than was the case decades ago, with more toxic species and toxins to monitor, as well as a larger range of impacted resources and areas affected. Quantitatively, no significant trend is seen for paralytic shellfish toxin (PST) events over the study interval, though there is clear evidence of the expansion of the problem into new regions and the emergence of a species that produces PSTs in Florida – Pyrodinium bahamense. Amnesic shellfish toxin (AST) events have significantly increased in the U.S., with an overall pattern of frequent outbreaks on the West Coast, emerging, recurring outbreaks on the East Coast, and sporadic incidents in the Gulf of Mexico. Despite the long historical record of neurotoxic shellfish toxin (NST) events, no significant trend is observed over the past 30 years. The recent emergence of diarrhetic shellfish toxins (DSTs) in the U.S. began along the Gulf Coast in 2008 and expanded to the West and East Coasts, though no significant trend through time is seen since then. Ciguatoxin (CTX) events caused by Gambierdiscus dinoflagellates have long impacted tropical and subtropical locations in the U.S., but due to a lack of monitoring programs as well as under-reporting of illnesses, data on these events are not available for time series analysis. Geographic expansion of Gambierdiscus into temperate and non-endemic areas (e.g., northern Gulf of Mexico) is apparent, and fostered by ocean warming. HAB-related marine wildlife morbidity and mortality events appear to be increasing, with statistically significant increasing trends observed in marine mammal poisonings caused by ASTs along the coast of California and NSTs in Florida. Since their first occurrence in 1985 in New York, brown tides resulting from high-density blooms of Aureococcus have spread south to Delaware, Maryland, and Virginia, while those caused by Aureoumbra have spread from the Gulf Coast to the east coast of Florida. Blooms of Margalefidinium polykrikoides occurred in four locations in the U.S. from 1921–2001 but have appeared in more than 15  U.S. estuaries since then, with ocean warming implicated as a causative factor. Numerous blooms of toxic cyanobacteria have been documented in all 50  U.S. states and the transport of cyanotoxins from freshwater systems into marine coastal waters is a recently identified and potentially significant threat to public and ecosystem health. Taken together, there is a significant increasing trend in all HAB events in HAEDAT over the 30-year study interval. Part of this observed HAB expansion simply reflects a better realization of the true or historic scale of the problem, long obscured by inadequate monitoring. Other contributing factors include the dispersion of species to new areas, the discovery of new HAB poisoning syndromes or impacts, and the stimulatory effects of human activities like nutrient pollution, aquaculture expansion, and ocean warming, among others. One result of this multifaceted expansion is that many regions of the U.S. now face a daunting diversity of species and toxins, representing a significant and growing challenge to resource managers and public health officials in terms of toxins, regions, and time intervals to monitor, and necessitating new approaches to monitoring and management. Mobilization of funding and resources for research, monitoring and management of HABs requires accurate information on the scale and nature of the national problem. HAEDAT and other databases can be of great value in this regard but efforts are needed to expand and sustain the collection of data regionally and nationally.
    Description: Support for DMA, MLR, and DMK was provided through the Woods Hole Center for Oceans and Human Health (National Science Foundation grant OCE-1840381 and National Institutes of Health grants NIEHS‐1P01-ES028938–01) and the U.S. National Office for Harmful Algal Blooms with funding from NOAA's National Centers for Coastal Ocean Science (NCCOS) through the Cooperative Institute for the North Atlantic Region (CINAR) (NA14OAR4320158, NA19OAR4320074). Funding for KAL and DMA was provided by the National Oceanic and Atmospheric Administration National Centers for Coastal Ocean Science Competitive Research Program under award NA20NOS4780195 to the Woods Hole Oceanographic Institution and NOAA's Northwest Fisheries Science Center. We also acknowledge support for A.H. from the National Oceanic and Atmospheric Administration [NOAA] Office of Ocean and Coastal Resource Management Award NA19NOS4780183, C.J.G from NOAA-MERHAB (NA19NOS4780186) and (NA16NOS4780189) for VLT Support was also received for JLS, CJG, and VLT from NOAA-NCCOS-ECOHAB under awards NA17NOS4780184 and NA19NOS4780182. This is ECOHAB publication number ECO972.
    Keywords: HAB ; Harmful algal bloom ; Red tide ; Eutrophication ; Time series ; HAEDAT
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...