GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-27
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(4), (2021): e2020JC016614, https://doi.org/10.1029/2020JC016614.
    Description: Horizontal and vertical motions associated with mesoscale (10–100 km) and submesoscale (1–10 km) features, such as fronts, meanders, eddies, and filaments, play a critical role in redistributing physical and biogeochemical properties in the ocean. This study makes use of a multiplatform data set of 82 drifters, a Lagrangian float, and profile timeseries of temperature and salinity, obtained in a ∼1-m/s semipermanent frontal jet in the Alboran Sea as part of CALYPSO (Coherent Lagrangian Pathways from the Surface Ocean to Interior). Drifters drogued at ∼1-m and 15-m depth capture the mesoscale and submesoscale circulation aligning along the perimeter of fronts due to horizontal shear. Clusters of drifters are used to estimate the kinematic properties, such as vorticity and divergence, of the flow by fitting a bivariate plane to the horizontal drifter velocities. Clusters with submesoscale length scales indicate normalized vorticity ζ/f 〉 1 with Coriolis frequency f and normalized divergence of (1) occurring in patches along the front, with error variance around 10%. By computing divergence from drifter clusters at two different depths, we estimate minimum vertical velocity of (−100 m day−1) in the upper 10 m of the water column. These results are at least twice as large as previous estimates of vertical velocity in the region. Location, magnitude, and timing of the convergence are consistent with behavior of a Lagrangian float subducting in the center of a drifter cluster. These results improve our understanding of frontal subduction and quantify convergence and vertical velocity using Lagrangian tools.
    Description: This research was supported by the Office of Naval Research (ONR) Departmental Research Initiative CALYPSO under program officers Terri Paluszkiewicz and Scott Harper. The authors' ONR grant numbers are as follows: D. R. Tarry, A. Pascual, S. Ruiz and A. Mahadevan N000141613130, S. Essink N000146101612470, P.-M. Poulain N000141812418, T. OÖzgökmen N000141812138, L. R. Centurioni N000141712517 and N00014191269, T. Farrar N000141812431, A. Shcherbina N000141812139 and N000141812420, and E. A. D'Asaro N000141812139.
    Keywords: Alboran Sea ; drifters ; kinematic properties ; Lagrangian float ; submesoscale ; vertical velocity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-06-10
    Description: Author Posting. © American Meteorological Society , 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Zippel, S. F., Farrar, J. T., Zappa, C. J., Miller, U., St Laurent, L., Ijichi, T., Weller, R. A., McRaven, L., Nylund, S., & Le Bel, D. Moored turbulence measurements using pulse-coherent doppler sonar. Journal of Atmospheric and Oceanic Technology, 38(9), (2021): 1621–1639, https://doi.org/10.1175/JTECH-D-21-0005.1.
    Description: Upper-ocean turbulence is central to the exchanges of heat, momentum, and gases across the air–sea interface and therefore plays a large role in weather and climate. Current understanding of upper-ocean mixing is lacking, often leading models to misrepresent mixed layer depths and sea surface temperature. In part, progress has been limited by the difficulty of measuring turbulence from fixed moorings that can simultaneously measure surface fluxes and upper-ocean stratification over long time periods. Here we introduce a direct wavenumber method for measuring turbulent kinetic energy (TKE) dissipation rates ϵ from long-enduring moorings using pulse-coherent ADCPs. We discuss optimal programming of the ADCPs, a robust mechanical design for use on a mooring to maximize data return, and data processing techniques including phase-ambiguity unwrapping, spectral analysis, and a correction for instrument response. The method was used in the Salinity Processes Upper-Ocean Regional Study (SPURS) to collect two year-long datasets. We find that the mooring-derived TKE dissipation rates compare favorably to estimates made nearby from a microstructure shear probe mounted to a glider during its two separate 2-week missions for O(10−8) ≤ ϵ ≤ O(10−5) m2 s−3. Periods of disagreement between turbulence estimates from the two platforms coincide with differences in vertical temperature profiles, which may indicate that barrier layers can substantially modulate upper-ocean turbulence over horizontal scales of 1–10 km. We also find that dissipation estimates from two different moorings at 12.5 and at 7 m are in agreement with the surface buoyancy flux during periods of strong nighttime convection, consistent with classic boundary layer theory.
    Description: This work was funded by NASA as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS), supporting field work for SPURS-1 (NASA Grant NNX11AE84G), for SPURS-2 (NASA Grant NNX15AG20G), and for analysis (NASA Grant 80NSSC18K1494). Funding for early iterations of this project associated with the VOCALS project and Stratus 9 mooring was provided by NSF (Awards 0745508 and 0745442). Additional funding was provided by ONR Grant N000141812431 and NSF Award 1756839. The Stratus Ocean Reference Station is funded by the Global Ocean Monitoring and Observing Program of the National Oceanic and Atmospheric Administration (CPO FundRef Number 100007298), through the Cooperative Institute for the North Atlantic Region (CINAR) under Cooperative Agreement NA14OAR4320158. Microstructure measurements made from the glider were supported by NSF (Award 1129646).
    Keywords: Ocean ; Turbulence ; Atmosphere-ocean interaction ; Boundary layer ; Oceanic mixed layer ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of [publisher] for personal use, not for redistribution. The definitive version was published in Schlundt, M., Farrar, J. T., Bigorre, S. P., Plueddemann, A. J., & Weller, R. A. (2020). Accuracy of wind observations from open-ocean buoys: correction for flow distortion. Journal of Atmospheric and Oceanic Technology, 37(4), 687-703, doi:10.1175/JTECH-D-19-0132.1.
    Description: The comparison of equivalent neutral winds obtained from (i) four WHOI buoys in the subtropics and (ii) scatterometer estimates at those locations reveals a root-mean-square (RMS) difference of 0.56–0.76 m s−1. To investigate this RMS difference, different buoy wind error sources were examined. These buoys are particularly well suited to examine two important sources of buoy wind errors because 1) redundant anemometers and a comparison with numerical flow simulations allow us to quantitatively assess flow distortion errors, and 2) 1-min sampling at the buoys allows us to examine the sensitivity of buoy temporal sampling/averaging in the buoy–scatterometer comparisons. The interanemometer difference varies as a function of wind direction relative to the buoy wind vane and is consistent with the effects of flow distortion expected based on numerical flow simulations. Comparison between the anemometers and scatterometer winds supports the interpretation that the interanemometer disagreement, which can be up to 5% of the wind speed, is due to flow distortion. These insights motivate an empirical correction to the individual anemometer records and subsequent comparison with scatterometer estimates show good agreement.
    Description: We gratefully acknowledge the help of three anonymous reviewers, whose input greatly improved the paper. In particular, one reviewer pointed out a mistake in our initial interpretation of scatterometer stability, which was corrected in the final manuscript. JTF and MS were supported by NASA Grant NNX14AM71G (International Ocean Vector Winds Science Team). The SPURS observations were supported by NASA (Grants NNX11AE84G, NNX15AG20G, and 80NSSC18K1494). The Stratus, NTAS, and WHOTS ocean reference stations (ORS) are long-term surface moorings deployed as part of the OceanSITES (http://www.oceansites.org) component of the Global Ocean Observing System, and are supported by NOAA’s Climate Program Office’s Ocean Observing and Monitoring Division, as are RAW, AJP, and SPB through the Cooperative Institute for the North Atlantic Region (CINAR) under Cooperative Agreement NA14OAR4320158 with NOAA Climate Program Office (CPO) (FundRef No. 100007298). The technical staff of the UOP Group at WHOI and the crews of NOAA and UNOLS vessels have been essential to the successful long-term maintenance of the ORS.
    Keywords: Ocean ; Wind ; Buoy observations ; Remote sensing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-27
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(8), (2022): 1705-1730, https://doi.org/10.1175/jpo-d-21-0243.1.
    Description: Formation and evolution of barrier layers (BLs) and associated temperature inversions (TIs) were investigated using a 1-yr time series of oceanic and air–sea surface observations from three moorings deployed in the eastern Pacific fresh pool. BL thickness and TI amplitude showed a seasonality with maxima in boreal summer and autumn when BLs were persistently present. Mixed layer salinity (MLS) and mixed layer temperature (MLT) budgets were constructed to investigate the formation mechanism of BLs and TIs. The MLS budget showed that BLs were initially formed in response to horizontal advection of freshwater in boreal summer and then primarily maintained by precipitation. The MLT budget revealed that penetration of shortwave radiation through the mixed layer base is the dominant contributor to TI formation through subsurface warming. Geostrophic advection is a secondary contributor to TI formation through surface cooling. When the BL exists, the cooling effect from entrainment and the warming effect from detrainment are both significantly reduced. In addition, when the BL is associated with the presence of a TI, entrainment works to warm the mixed layer. The presence of BLs makes the shallower mixed layer more sensitive to surface heat and freshwater fluxes, acting to enhance the formation of TIs that increase the subsurface warming via shortwave penetration.
    Description: SK is supported by JSPS Overseas Research Fellowships. JS and SK are supported by NASA Grant 80NSSC18K1500. JTF and the mooring deployment were funded by NASA Grants NNX15AG20G and 80NSSC18K1494. DZ is supported by NASA Grant 80NSSC18K1499. This publication is partially funded by the Cooperative Institute for Climate, Ocean, and Ecosystem Studies (CICOES) under NOAA Cooperative Agreement NA20OAR4320271, Contribution 2021-1152. This is PMEL Contribution 5268.
    Description: 2023-01-27
    Keywords: Ocean ; North Pacific Ocean ; Tropics ; Entrainment ; Oceanic mixed layer ; Salinity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-03-11
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tarry, D., Ruiz, S., Johnston, T., Poulain, P., Özgökmen, T., Centurioni, L., Berta, M., Esposito, G., Farrar, J., Mahadevan, A., & Pascual, A. Drifter observations reveal intense vertical velocity in a surface ocean front. Geophysical Research Letters, 49(18), (2022): e2022GL098969, https://doi.org/10.1029/2022gl098969.
    Description: Measuring vertical motions represent a challenge as they are typically 3–4 orders of magnitude smaller than the horizontal velocities. Here, we show that surface vertical velocities are intensified at submesoscales and are dominated by high frequency variability. We use drifter observations to calculate divergence and vertical velocities in the upper 15 m of the water column at two different horizontal scales. The drifters, deployed at the edge of a mesoscale eddy in the Alboran Sea, show an area of strong convergence (urn:x-wiley:00948276:media:grl64766:grl64766-math-0001(f)) associated with vertical velocities of −100 m day−1. This study shows that a multilayered-drifter array can be an effective tool for estimating vertical velocity near the ocean surface.
    Description: This research was supported by the Office of Naval Research (ONR) Departmental Research Initiative CALYPSO under program officers Terri Paluszkiewicz and Scott Harper. The authors' ONR Grant No. are as follows: DT, SR, AM, and AP N000141613130, TMSJ N000146101612470, PP N000141812418, TO N000141812138, LRC N000141712517, and N00014191269, MB and GE N000141812782 and N000141812039, and JTF N000141812431.
    Keywords: Drifters ; Vertical velocity ; Submesoscale ; Kinematic properties ; Fronts ; Alboran Sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...